Glossary

General
	Create Virtual Machine Wizard
	
 A software program available in YaST and Virtual Machine Manager
 that provides a graphical interface to guide you through the steps to
 create virtual machines. It can also be run in text mode by entering
 virt-install at a command prompt in the host
 environment.

	Dom0
	
 The term is used in Xen environments, and refers to a virtual
 machine. The host operating system is actually a virtual machine
 running in a privileged domain and can be called Dom0. All
 other virtual machines on the host run in unprivileged domains and can
 be called domain U's.

	hardware-assisted
	
 Intel* and AMD* provide virtualization hardware-assisted technology.
 This reduces the frequency of VM IN/OUT (fewer VM traps), because software
 is a major source of overhead, and increases the efficiency (the
 execution is done by the hardware). Moreover, this reduces the memory
 footprint, provides better resource control, and allows secure
 assignment of specific I/O devices.

	Host Environment
	
 The desktop or command line environment that allows interaction with
 the host computer's environment. It provides a command line environment
 and can also include a graphical desktop, such as GNOME or IceWM. The
 host environment runs as a special type of virtual machine that has
 privileges to control and manage other virtual machines. Other commonly
 used terms include Dom0, privileged domain,
 and host operating system.

	Hypervisor
	
 The software that coordinates the low-level interaction between virtual
 machines and the underlying physical computer hardware.

	KVM
	
 See Chapter 3, Introduction to KVM Virtualization

	Paravirtualized Frame Buffer
	
 The video output device that drives a video display from a memory
 buffer containing a complete frame of data for virtual machine displays
 running in paravirtual mode.

	VHS
	
 Virtualization Host Server

 The physical computer running a SUSE virtualization platform
 software. The virtualization environment consists of the hypervisor,
 the host environment, virtual machines, and associated tools, commands,
 and configuration files. Other commonly used terms include host, Host
 Computer, Host Machine (HM), Virtual Server (VS), Virtual Machine Host
 (VMH), and VM Host Server (VHS).

	VirtFS
	
 VirtFS is a new paravirtualized file system interface designed for
 improving pass-through technologies in the KVM environment. It is based
 on the VirtIO framework.

	Virtual Machine
	
 A virtualized PC environment (VM) capable of hosting a guest operating
 system and associated applications. Could be also called a
 VM Guest.

	Virtual Machine Manager
	
 A software program that provides a graphical user interface for
 creating and managing virtual machines.

	Virtualized
	
 A guest operating system or application running on a virtual machine.

	Xen
	
 See Chapter 2, Introduction to Xen Virtualization

	xl
	
 A set of commands for Xen that lets administrators manage virtual
 machines from a command prompt on the host computer. It replaced the
 deprecated xm tool stack.

CPU
	CPU capping
	
 Virtual CPU capping allows you to set vCPU capacity to 1–100 percent
 of the physical CPU capacity.

	CPU hotplugging
	
 CPU hotplugging is used to describe the functions of
 replacing/adding/removing a CPU without shutting down the system.

	CPU over-commitment
	
 Virtual CPU over-commitment is the ability to assign more virtual CPUs
 to VMs than the actual number of physical CPUs present in the physical
 system. This procedure does not increase the overall performance of the
 system, but might be useful for testing purposes.

	CPU pinning
	
 Processor affinity, or CPU pinning enables the binding and unbinding of
 a process or a thread to a central processing unit (CPU) or a range of
 CPUs.

Network
	Bridged Networking
	
 A type of network connection that lets a virtual machine be identified
 on an external network as a unique identity that is separate from and
 unrelated to its host computer.

	Empty Bridge
	
 A type of network bridge that has no physical network device or virtual
 network device provided by the host. This lets virtual machines
 communicate with other virtual machines on the same host but not with
 the host or on an external network.

	External Network
	
 The network outside a host's internal network environment.

	Internal Network
	
 A type of network configuration that restricts virtual machines to
 their host environment.

	Local Bridge
	
 A type of network bridge that has a virtual network device but no
 physical network device provided by the host. This lets virtual
 machines communicate with the host and other virtual machines on the
 host. Virtual machines can communicate on an external network through
 the host.

	Network Address Translation (NAT)
	
 A type of network connection that lets a virtual machine use the IP
 address and MAC address of the host.

	No Host Bridge
	
 A type of network bridge that has a physical network device but no
 virtual network device provided by the host. This lets virtual machines
 communicate on an external network but not with the host. This lets you
 separate virtual machine network communications from the host
 environment.

	Traditional Bridge
	
 A type of network bridge that has both a physical network device and a
 virtual network device provided by the host.

Storage
	AHCI
	
 The Advanced Host Controller Interface (AHCI) is a technical standard
 defined by Intel* that specifies the operation of Serial ATA (SATA)
 host bus adapters in a non-implementation-specific manner.

	Block Device
	
 Data storage devices, such as CD-ROM drives or disk drives, that move
 data in the form of blocks. Partitions and volumes are also considered
 block devices.

	File-Backed Virtual Disk
	
 A virtual disk based on a file, also called a disk image file.

	Raw Disk
	
 A method of accessing data on a disk at the individual byte level
 instead of through its file system.

	Sparse image file
	
 A disk image file that does not reserve its entire amount of disk space
 but expands as data is written to it.

	xvda
	
 The drive designation given to the first virtual disk on a paravirtual
 machine.

Linux Containers
	cgroups
	
 Kernel Control Groups (commonly called “cgroups”) are a
 kernel feature that allows aggregating or partitioning tasks (processes)
 and all their children into hierarchical organized groups to isolate
 resources.

 See also “Kernel Control Groups” (↑System Analysis and Tuning Guide).

	chroot
	
 A change root (chroot, or change root jail) is a
 section in the file system that is isolated from the rest of the file
 system. For this purpose, the chroot or
 pivot_root command is used to change the root of the
 file system. A program that is executed in such a “chroot
 jail” cannot access files outside the designated directory tree.

	container
	
 Can be seen as a kind of “virtual machine” on the host
 server that can run any Linux system, for example openSUSE,
 SUSE Linux Enterprise Desktop, or SUSE Linux Enterprise Server. The main difference with a normal virtual
 machine is that the container shares its kernel with the host it runs
 on.

	Kernel namespaces
	
 A kernel feature to isolate some resources like network, users, and
 others for a group of processes.

Acronyms
	ACPI
	
 Advanced Configuration and Power Interface (ACPI) specification provides
 an open standard for device configuration and power management by the
 operating system.

	AER
	
 Advanced Error Reporting

 AER is a capability provided by the PCI Express specification which
 allows for reporting of PCI errors and recovery from some of them.

	APIC
	
 Advanced Programmable Interrupt Controller (APIC) is a family of
 interrupt controllers.

	BDF
	
 Bus:Device:Function

 Notation used to succinctly describe PCI and PCIe devices.

	CG
	
 Control Groups

 Feature to limit, account and isolate resource usage (CPU, memory, disk
 I/O, etc.).

	EDF
	
 Earliest Deadline First

 This scheduler provides weighted CPU sharing in an intuitive way and
 uses real-time algorithms to ensure time guarantees.

	EPT
	
 Extended Page Tables

 Performance in a virtualized environment is close to that in a native
 environment. Virtualization does create some overheads, however. These
 come from the virtualization of the CPU, the
 MMU, and the I/O devices. In some
 recent x86 processors AMD and Intel have begun to provide hardware
 extensions to help bridge this performance gap. In 2006, both vendors
 introduced their first generation hardware support for x86
 virtualization with AMD-Virtualization (AMD-V) and Intel® VT-x
 technologies. Recently Intel introduced its second generation of
 hardware support that incorporates MMU-virtualization, called Extended
 Page Tables (EPT). EPT-enabled systems can improve performance compared
 to using shadow paging for MMU
 virtualization. EPT increases memory access latencies for a few
 workloads. This cost can be reduced by effectively using large pages in
 the guest and the hypervisor.

	FLASK
	
 Flux Advanced Security Kernel

 Xen implements a type of mandatory access control via a security
 architecture called FLASK using a module of the same name.

	HAP
	
 High Assurance Platform

 HAP combines hardware and software technologies to improve workstation
 and network security.

	HVM
	
 Hardware Virtual Machine (commonly called like this by Xen).

	IOMMU
	
 Input/Output Memory Management Unit

 IOMMU (AMD* technology) is a memory management unit
 (MMU) that connects a direct memory
 access-capable (DMA-capable) I/O bus to the main memory.

	KSM
	
 Kernel Same Page Merging

 KSM allows for automatic sharing of identical memory pages between
 guests to save host memory. KVM is optimized to use KSM if enabled
 on the VM Host Server.

	MMU
	
 Memory Management Unit

 is a computer hardware component responsible for handling accesses to
 memory requested by the CPU. Its functions include translation of
 virtual addresses to physical addresses (that is, virtual memory
 management), memory protection, cache control, bus arbitration and in
 simpler computer architectures (especially 8-bit systems) bank
 switching.

	PAE
	
 Physical Address Extension

 32-bit x86 operating systems use Physical Address Extension (PAE) mode
 to enable addressing of more than 4 GB of physical memory. In PAE mode,
 page table entries (PTEs) are 64 bits in size.

	PCID
	
 Process-context identifiers

 These are a facility by which a logical processor may cache information
 for multiple linear-address spaces so that the processor may retain
 cached information when software switches to a different linear address
 space. INVPCID instruction is used for fine-grained
 TLB flush, which is benefit for
 kernel.

	PCIe
	
 Peripheral Component Interconnect Express

 PCIe was designed to replace older PCI, PCI-X and AGP bus standards.
 PCIe has numerous improvements including a higher maximum system bus
 throughput, a lower I/O pin count and smaller physical footprint.
 Moreover it also has a more detailed error detection and reporting
 mechanism (AER), and a native
 hotplug functionality. It is also backward compatible with PCI.

	PSE and PSE36
	
 Page Size Extended

 PSE refers to a feature of x86 processors that allows for pages larger
 than the traditional 4 KiB size. PSE-36 capability offers 4 more bits,
 in addition to the normal 10 bits, which are used inside a page
 directory entry pointing to a large page. This allows a large page to be
 located in 36-bit address space.

	PT
	
 Page Table

 A page table is the data structure used by a virtual memory system in a
 computer operating system to store the mapping between virtual addresses
 and physical addresses. Virtual addresses are those unique to the
 accessing process. Physical addresses are those unique to the hardware
 (RAM).

	QXL
	
 QXL is a cirrus VGA framebuffer (8M) driver for virtualized environment.

	RVI or NPT
	
 Rapid Virtualization Indexing, Nested Page Tables

 An AMD second generation hardware-assisted virtualization technology for
 the processor memory management unit
 (MMU).

	SATA
	
 Serial ATA

 SATA is a computer bus interface that connects host bus adapters to mass
 storage devices such as hard disks and optical drives.

	Seccomp2-based sandboxing
	
 Sandboxed environment where only predetermined system calls are
 permitted for added protection against malicious behavior.

	SMEP
	
 Supervisor Mode Execution Protection

 This prevents the execution of user-mode pages by the Xen hypervisor,
 making many application-to-hypervisor exploits much harder.

	SPICE
	
 Simple Protocol for Independent Computing Environments

	SXP
	
 An SXP file is a Xen Configuration File.

	TCG
	
 Tiny Code Generator

 Instructions are emulated rather than executed by the CPU.

	THP
	
 Transparent Huge Pages

 This allows CPUs to address memory using pages larger than the default 4
 KB. This helps reduce memory consumption and CPU cache usage. KVM
 is optimized to use THP (via madvise and opportunistic methods) if
 enabled on the VM Host Server.

	TLB
	
 Translation Lookaside Buffer

 TLB is a cache that memory management hardware uses to improve virtual
 address translation speed. All current desktop, notebook, and server
 processors use a TLB to map virtual and physical address spaces, and it
 is nearly always present in any hardware that uses virtual memory.

	VCPU
	
 A scheduling entity, containing each state for virtualized CPU.

	VDI
	
 Virtual Desktop Infrastructure

	VFIO
	
 Since kernel v3.6; a new method of accessing PCI devices from user space
 called VFIO.

	VHS
	
 Virtualization Host Server

	VM root
	VMM will run in
 VMX root operation and guest software
 will run in VMX non-root operation.
 Transitions between VMX root
 operation and VMX non-root operation
 are called VMX transitions.

	VMCS
	
 Virtual Machine Control Structure

 VMX non-root operation and VMX transitions are controlled by a data
 structure called a virtual-machine control structure (VMCS). Access to
 the VMCS is managed through a component of processor state called the
 VMCS pointer (one per logical processor). The value of the VMCS pointer
 is the 64-bit address of the VMCS. The VMCS pointer is read and written
 using the instructions VMPTRST and VMPTRLD. The
 VMM configures a VMCS
 using the VMREAD, VMWRITE, and VMCLEAR instructions. A
 VMM could use a different
 VMCS for each virtual machine that it supports. For a virtual machine
 with multiple logical processors (virtual processors), the
 VMM could use a different
 VMCS for each virtual processor.

	VMDq
	
 Virtual Machine Device Queue

 Multi-queue network adapters exist which support multiple VMs at the
 hardware level, having separate packet queues associated to the
 different hosted VMs (by means of the IP addresses of the VMs).

	VMM
	
 Virtual Machine Monitor (Hypervisor)

 When the processor encounters an instruction or event of interest to the
 Hypervisor (VMM), it exits
 from guest mode back to the VMM. The VMM emulates the instruction or
 other event, at a fraction of native speed, and then returns to guest
 mode. The transitions from guest mode to the VMM and back again are
 high-latency operations, during which guest execution is completely
 stalled.

	VMX
	
 Virtual Machine eXtensions

	VPID
	
 New support for software control of
 TLB (VPID improves
 TLB performance with small
 VMM development effort).

	VT-d
	
 Virtualization Technology for Directed I/O

 Like IOMMU for
 Intel*.

	vTPM
	
 Component to establish end-to-end integrity for guests via Trusted
 Computing.

Chapter 26. Setting Up a KVM VM Host Server

 This section documents how to set up and use openSUSE Leap15.0
 as a QEMU-KVM based virtual machine host.

Resources

 In general, the virtual guest system needs the same hardware resources as
 when installed on a physical machine. The more guests you plan to run on
 the host system, the more hardware resources—CPU, disk, memory, and
 network—you need to add to the VM Host Server.

CPU Support for Virtualization

 To run KVM, your CPU must support virtualization, and
 virtualization needs to be enabled in BIOS. The file
 /proc/cpuinfo includes information about your CPU
 features.

Starting the Container

 After the host and container migration is complete, the container can be
 started:

root # virsh -c lxc:/// start lxc_container

 If you need to get a console to view the logging messages produced by the
 container, run:

root # virsh -c lxc:/// console lxc_container

Chapter 15. VM Guest Clock Settings

Abstract

 Keeping the correct time in a VM Guest is one of the more difficult
 aspects of virtualization. Keeping the correct time is especially important
 for network applications and is also a prerequisite to do a live migration
 of a VM Guest.

Timekeeping on the VM Host Server

 It is strongly recommended to ensure the VM Host Server keeps the correct time as
 well, for example, by using NTP (see “Time Synchronization with NTP” (↑Reference) for more
 information).

KVM: Using kvm_clock

 KVM provides a paravirtualized clock which is supported via the
 kvm_clock driver. It is strongly recommended to use
 kvm_clock.

 Use the following command inside a VM Guest running Linux to check whether
 the driver kvm_clock has been loaded:

tux > sudo dmesg | grep kvm-clock
[0.000000] kvm-clock: cpu 0, msr 0:7d3a81, boot clock
[0.000000] kvm-clock: cpu 0, msr 0:1206a81, primary cpu clock
[0.012000] kvm-clock: cpu 1, msr 0:1306a81, secondary cpu clock
[0.160082] Switching to clocksource kvm-clock

 To check which clock source is currently used, run the following command in
 the VM Guest. It should output kvm-clock:

tux > cat /sys/devices/system/clocksource/clocksource0/current_clocksource
kvm-clock and NTP

 When using kvm-clock, it is recommended to use NTP in
 the VM Guest, as well. Using NTP on the VM Host Server is also recommended.

Other Timekeeping Methods

 The paravirtualized kvm-clock is currently not for
 Windows* operating systems. For Windows*, use the Windows Time
 Service Tools for time synchronization (see
 http://technet.microsoft.com/en-us/library/cc773263%28WS.10%29.aspx
 for more information).

Starting the Virtual Machine Host

 If virtualization software is correctly installed, the computer boots to
 display the GRUB 2 boot loader with a Xen option on the
 menu. Select this option to start the virtual machine host.

Xen and Kdump

 In Xen, the hypervisor manages the memory resource. If you need to
 reserve system memory for a recovery kernel in Dom0, this memory need to
 be reserved by the hypervisor. Thus, it is necessary to add the parameter
 crashkernel=size to the kernel
 line instead of using the line with the other boot parameters.

 For more information on the crashkernel parameter, see
 “Calculating crashkernel Allocation Size” (Section “Kexec and Kdump”, ↑System Analysis and Tuning Guide).

 If the Xen option is not on the GRUB 2 menu, review the
 steps for installation and verify that the GRUB 2 boot loader has been
 updated. If the installation has been done without selecting the Xen
 pattern, run the YaST Software Management, select the
 filter Patterns and choose Xen Virtual Machine
 Host Server for installation.

 After booting the hypervisor, the Dom0 virtual machine starts and displays
 its graphical desktop environment. If you did not install a graphical
 desktop, the command line environment appears.

Graphics Problems

 Sometimes it may happen that the graphics system does not work properly. In
 this case, add vga=ask to the boot parameters. To
 activate permanent settings, use vga=mode-0x??? where
 ??? is calculated as 0x100 + VESA
 mode from
 http://en.wikipedia.org/wiki/VESA_BIOS_Extensions, for
 example vga=mode-0x361.

 Before starting to install virtual guests, make sure that the system time is
 correct. To do this, configure NTP (Network Time Protocol) on the
 controlling domain:

	
 In YaST select Network Services+NTP Configuration.

	
 Select the option to automatically start the NTP daemon during boot.
 Provide the IP address of an existing NTP time server, then click
 Finish.

Time Services on Virtual Guests

 Hardware clocks commonly are not very precise. All modern operating systems
 try to correct the system time compared to the hardware time by means of an
 additional time source. To get the correct time on all VM Guest systems,
 also activate the network time services on each respective guest or make
 sure that the guest uses the system time of the host. For more about
 Independent Wallclocks in openSUSE Leap see
 Section “Xen Virtual Machine Clock Settings”.

 For more information about managing virtual machines, see
 Chapter 19, Managing a Virtualization Environment.

Deleting a VM Guest

 By default, deleting a VM Guest using virsh removes only
 its XML configuration. Since attached storage is not deleted by default, you
 can reuse it with another VM Guest. With Virtual Machine Manager, you can also delete a
 guest's storage files as well—this will completely erase the guest.

Deleting a VM Guest with Virtual Machine Manager

	
 In the Virtual Machine Manager, right-click a VM Guest entry.

	
 From the context menu, choose Delete.

	
 A confirmation window opens. Clicking Delete will
 permanently erase the VM Guest. The deletion is not recoverable.

 You can also permanently delete the guest's virtual disk by activating
 Delete Associated Storage Files. The deletion is not
 recoverable either.

Deleting a VM Guest with virsh

 To delete a VM Guest, it needs to be shut down first. It is not possible
 to delete a running guest. For information on shutting down, see
 Section “Changing a VM Guest's State: Start, Stop, Pause”.

 To delete a VM Guest with virsh, run
 virshundefineVM_NAME.

tux > virsh undefine sles12

 There is no option to automatically delete the attached storage files. If
 they are managed by libvirt, delete them as described in
 Section “Deleting Volumes from a Storage Pool”.

Feedback

 Several feedback channels are available:

	Bug Reports
	
 To report bugs for openSUSE Leap, go to
 https://bugzilla.opensuse.org/, log in, and
 click New.

	Mail
	
 For feedback on the documentation of this product, you can also send a
 mail to doc-team@suse.com. Make sure to include the
 document title, the product version and the publication date of the
 documentation. To report errors or suggest enhancements, provide a concise
 description of the problem and refer to the respective section number and
 page (or URL).

Xen HA and Private Bridges

 When using several guest systems that need to communicate between each
 other, it is possible to do this over the regular interface. However, for
 security reasons it may be advisable to create a bridge that is only
 connected to guest systems.

 In an HA environment that also should support live migrations, such a
 private bridge must be connected to the other Xen hosts. This is possible
 by using dedicated physical Ethernet devices and a dedicated network.

 A different implementation method is using VLAN interfaces. In that case,
 all the traffic goes over the regular Ethernet interface. However, the
 VLAN interface does not get the regular traffic, because only the VLAN
 packets that are tagged for the correct VLAN are forwarded.

 For more information about the setup of a VLAN interface see
 Section “Using VLAN Interfaces”.

Managing Virtual Machine Snapshots

 Managing snapshots in QEMU monitor is not officially supported by
 SUSE yet. The information found in this section may be helpful in
 specific cases.

Virtual Machine snapshots are snapshots of the complete
 virtual machine including the state of CPU, RAM, and the content of all
 writable disks. To use virtual machine snapshots, you must have at least
 one non-removable and writable block device using the
 qcow2 disk image format.

 Snapshots are helpful when you need to save your virtual machine in a
 particular state. For example, after you have configured network services
 on a virtualized server and want to quickly start the virtual machine in
 the same state that was saved last. You can also create a snapshot after
 the virtual machine has been powered off to create a backup state before
 you try something experimental and possibly make VM Guest unstable.
 This section introduces the former case, while the latter is described in
 Section “Managing Snapshots of Virtual Machines with qemu-img”.

 The following commands are available for managing snapshots in QEMU
 monitor:

	
 savevm
 NAME

	
 Creates a new virtual machine snapshot under the tag
 NAME or replaces an existing snapshot.

	
 loadvm
 NAME

	
 Loads a virtual machine snapshot tagged
 NAME.

	
 delvm

	
 Deletes a virtual machine snapshot.

	
 info snapshots

	
 Prints information about available snapshots.

(qemu) info snapshots
Snapshot list:
ID[image: 1] TAG[image: 2] VM SIZE[image: 3] DATE[image: 4] VM CLOCK[image: 5]
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965
	[image: 1]
	
 Unique identification number of the snapshot. Usually
 auto-incremented.

	[image: 2]
	
 Unique description string of the snapshot. It is meant as a human
 readable version of the ID.

	[image: 3]
	
 The disk space occupied by the snapshot. Note that the more memory
 is consumed by running applications, the bigger the snapshot is.

	[image: 4]
	
 Time and date the snapshot was created.

	[image: 5]
	
 The current state of the virtual machine's clock.

Installing Containers

 To install containers, proceed as follows:

	
 Start YaST and choose Virtualization+Install Hypervisor and
 Tools.

	
 Select libvirt lxc daemon and confirm with
 Accept.

Chapter 5. Virtualization Tools

Abstract
libvirt is a library that provides a common API for managing popular
 virtualization solutions, among them KVM, LXC, and Xen. The library
 provides a normalized management API for these virtualization solutions,
 allowing a stable, cross-hypervisor interface for higher-level management
 tools. The library also provides APIs for management of virtual networks
 and storage on the VM Host Server. The configuration of each VM Guest is stored
 in an XML file.

 With libvirt you can also manage your VM Guests remotely. It supports
 TLS encryption, x509 certificates and authentication with SASL. This
 enables managing VM Host Servers centrally from a single workstation,
 alleviating the need to access each VM Host Server individually.

 Using the libvirt-based tools is the recommended way of managing
 VM Guests. Interoperability between libvirt and libvirt-based
 applications has been tested and is an essential part of SUSE's support
 stance.

Virtualization Console Tools

 The following libvirt-based tools for the command line are available on
 openSUSE Leap. All tools are provided by packages carrying the tool's name.

	
 virsh

	
 A command line tool to manage VM Guests with similar functionality
 as the Virtual Machine Manager. Allows you to change a VM Guest's status (start,
 stop, pause, etc.), to set up new guests and devices, or to edit
 existing configurations. virsh is also useful to
 script VM Guest management operations.

virsh takes the first argument as a
 command and further arguments as options to this command:

virsh [-c URI] COMMANDDOMAIN-ID [OPTIONS]

 Like zypper, virsh can also
 be called without a command. In this case it starts a shell waiting for
 your commands. This mode is useful when having to run subsequent
 commands:

~> virsh -c qemu+ssh://wilber@mercury.example.com/system
Enter passphrase for key '/home/wilber/.ssh/id_rsa':
Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands
 'quit' to quit

virsh # hostname
mercury.example.com

	
 virt-install

	
 A command line tool for creating new VM Guests using the
 libvirt library. It supports graphical installations via VNC or
 SPICE protocols. Given suitable
 command line arguments, virt-install can run
 completely unattended. This allows for easy automation of guest
 installs. virt-install is the default installation
 tool used by the Virtual Machine Manager.

Chapter 21. Virtualization: Configuration Options and Settings

 The documentation in this section, describes advanced management tasks and
 configuration options that might help technology innovators implement
 leading-edge virtualization solutions. It is provided as a courtesy and
 does not imply that all documented options and tasks are supported by
 Novell, Inc.

Virtual CD Readers

 Virtual CD readers can be set up when a virtual machine is created or
 added to an existing virtual machine. A virtual CD reader can be based on
 a physical CD/DVD, or based on an ISO image. Virtual CD readers work
 differently depending on whether they are paravirtual or fully virtual.

Virtual CD Readers on Paravirtual Machines

 A paravirtual machine can have up to 100 block devices composed of
 virtual CD readers and virtual disks. On paravirtual machines, virtual
 CD readers present the CD as a virtual disk with read-only access.
 Virtual CD readers cannot be used to write data to a CD.

 After you have finished accessing a CD on a paravirtual machine, it is
 recommended that you remove the virtual CD reader from the virtual
 machine.

 Paravirtualized guests can use the device type
 devtype=cdrom. This partly emulates the behavior of a
 real CD reader, and allows CDs to be changed. It is even possible to use
 the eject command to open the tray of the CD reader.

Virtual CD Readers on Fully Virtual Machines

 A fully virtual machine can have up to four block devices composed of
 virtual CD readers and virtual disks. A virtual CD reader on a fully
 virtual machine interacts with an inserted CD in the way you would
 expect a physical CD reader to interact.

 When a CD is inserted in the physical CD reader on the host computer,
 all virtual machines with virtual CD readers based on the physical CD
 reader, such as /dev/cdrom/, can read the
 inserted CD. Assuming the operating system has automount functionality,
 the CD should automatically appear in the file system. Virtual CD
 readers cannot be used to write data to a CD. They are configured as
 read-only devices.

Adding Virtual CD Readers

 Virtual CD readers can be based on a CD inserted into the CD reader or
 on an ISO image file.

	
 Make sure that the virtual machine is running and the operating system
 has finished booting.

	
 Insert the desired CD into the physical CD reader or copy the desired
 ISO image to a location available to Dom0.

	
 Select a new, unused block device in your VM Guest, such as
 /dev/xvdb.

	
 Choose the CD reader or ISO image that you want to assign to the
 guest.

	
 When using a real CD reader, use the following command to assign the
 CD reader to your VM Guest. In this example, the name of the guest
 is alice:

tux > sudo xl block-attach alice target=/dev/sr0,vdev=xvdb,access=ro

	
 When assigning an image file, use the following command:

tux > sudo xl block-attach alice target=/path/to/file.iso,vdev=xvdb,access=ro

	
 A new block device, such as /dev/xvdb, is added
 to the virtual machine.

	
 If the virtual machine is running Linux, complete the following:

	
 Open a terminal in the virtual machine and enter fdisk
 -l to verify that the device was properly added. You can
 also enter ls /sys/block to see all disks
 available to the virtual machine.

 The CD is recognized by the virtual machine as a virtual disk with a
 drive designation, for example:

/dev/xvdb

	
 Enter the command to mount the CD or ISO image using its drive
 designation. For example,

tux > sudo mount -o ro /dev/xvdb /mnt

 mounts the CD to a mount point named /mnt.

 The CD or ISO image file should be available to the virtual machine
 at the specified mount point.

	
 If the virtual machine is running Windows, reboot the virtual machine.

 Verify that the virtual CD reader appears in its My
 Computer section.

Removing Virtual CD Readers

	
 Make sure that the virtual machine is running and the operating system
 has finished booting.

	
 If the virtual CD reader is mounted, unmount it from within the
 virtual machine.

	
 Enter xl block-list alice on the host view of the
 guest block devices.

	
 Enter xl block-detach aliceBLOCK_DEV_ID to remove the virtual device
 from the guest. If that fails, try to add -f to force
 the removal.

	
 Press the hardware eject button to eject the CD.

Chapter 16. libguestfs

Abstract
Virtual Machines consist of disk images and definition
 files. Manually accessing and manipulating these guest components
 (outside of normal hypervisor processes) is possible, but inherently
 dangerous and risks compromising data integrity. libguestfs is a C
 library and a corresponding set of tools designed for safely accessing and
 modifying Virtual Machine disk images—outside of normal
 hypervisor processes, but without the risk normally associated with
 manual editing.

VM Guest Manipulation Overview

VM Guest Manipulation Risk

 As disk images and definition files are simply another type of file in a
 Linux environment, it is possible to use many tools to access,
 edit and write to these files. When used correctly, such tools can be an
 important part of guest administration. However, even correct usage of
 these tools is not without risk. Risks that should be considered when
 manually manipulating guest disk images include:

	Data Corruption: Concurrently accessing images,
 by the host machine or another node in a cluster, can cause changes to
 be lost or data corruption to occur if virtualization protection
 layers are bypassed.

	Security: Mounting disk images as loop devices
 requires root access. While an image is loop mounted, other users and
 processes can potentially access the disk contents.

	Administrator Error: Bypassing virtualization
 layers correctly requires advanced understanding of virtual components
 and tools. Failing to isolate the images or failing to clean up
 properly after changes have been made can lead to further problems
 once back in virtualization control.

libguestfs Design

 libguestfs C library has been designed to safely and securely create,
 access and modify virtual machine (VM Guest) disk images. It also
 provides additional language bindings: for
 Perl,
 Python,
 PHP (only for 64-bit machines), and

 Ruby. libguestfs can access VM Guest disk images without
 needing root and with multiple layers of defense against rogue disk
 images.

 libguestfs provides many tools designed for accessing and
 modifying VM Guest disk images and contents. These tools provide
 such capabilities as: viewing and editing files inside guests, scripting
 changes to VM Guests, monitoring disk used/free statistics, creating
 guests, doing V2V or P2V migrations, performing backups, cloning VM Guests,
 formatting disks, and resizing disks.

Best Practices

 You must not use libguestfs tools on live virtual machines. Doing so
 will probably result in disk corruption in the VM Guest. libguestfs
 tools try to stop you from doing this, but cannot catch all cases.

 However most command have the --ro (read-only) option.
 With this option, you can attach a command to a live virtual machine.
 The results might be strange or inconsistent at times but you will not
 risk disk corruption.

Part II. Managing Virtual Machines with libvirt

Advanced Guest Installation Scenarios

 This section provides instructions for operations exceeding the scope of a
 normal installation, such as memory ballooning and installing add-on
 products.

Including Add-on Products in the Installation

 Some operating systems such as openSUSE Leap offer to include add-on products in
 the installation process. In case the add-on product installation source is
 provided via network, no special VM Guest configuration is needed. If it
 is provided via CD/DVD or ISO image, it is necessary to provide the
 VM Guest installation system with both, the standard installation medium
 and an image for the add-on product.

 In case you are using the GUI-based installation, select Customize
 Configuration Before Install in the last step of the wizard and
 add the add-on product ISO image via Add
 Hardware+Storage. Specify the
 path to the image and set the Device Type to
 CD-ROM.

 If installing from the command line, you need to set up the virtual CD/DVD
 drives with the --disk parameter rather than with
 --cdrom. The device that is specified first is used for
 booting. The following example will install SUSE Linux Enterprise Server 12 plus SDK:

tux > virt-install --name sles12+sdk --memory 1024 --disk size=10 \
--disk /virt/iso/SLES12.iso,device=cdrom \
--disk /virt/iso/SLES12_SDK.iso,device=cdrom \
--graphics vnc --os-variant sles12

Part IV. Managing Virtual Machines with Xen

External References

	
 libguestfs.org

	
 libguestfs
 FAQ

Mapping Network Storage to Virtual Disk

 Similar to mapping a local disk image (see
 Section “Mapping Physical Storage to Virtual Disks”), you can map a network disk as a
 virtual disk as well.

 The following example shows mapping of an RBD (RADOS Block Device) disk with
 multiple Ceph monitors and cephx authentication enabled:

disk = ['vdev=hdc, backendtype=qdisk, \
target=rbd:libvirt-pool/new-libvirt-image:\
id=libvirt:key=AQDsPWtW8JoXJBAAyLPQe7MhCC+JPkI3QuhaAw==:auth_supported=cephx;none:\
mon_host=137.65.135.205\\:6789;137.65.135.206\\:6789;137.65.135.207\\:6789']

 Following is an example of an NBD (Network Block Device) disk mapping:

disk = ['vdev=hdc, backendtype=qdisk, target=nbd:151.155.144.82:5555']

Host-Based Routing in Xen

 Xen can be set up to use host-based routing in the controlling
 Dom0. Unfortunately, this is not yet well supported from YaST
 and requires quite an amount of manual editing of configuration files.
 Thus, this is a task that requires an advanced administrator.

 The following configuration will only work when using fixed IP addresses.
 Using DHCP is not practicable with this procedure, because the IP address
 must be known to both, the VM Guest and the VM Host Server system.

 The easiest way to create a routed guest is to change the networking from
 a bridged to a routed network. As a requirement to the following
 procedures, a VM Guest with a bridged network setup must be
 installed. For example, the VM Host Server is named earth with the IP
 192.168.1.20, and the VM Guest has the name alice with the
 IP 192.168.1.21.

Procedure 18.1. Configuring a routed IPv4 VM Guest
	
 Make sure that alice is shut down. Use
 xl commands to shut down and check.

	
 Prepare the network configuration on the VM Host Server earth:

	
 Create a hotplug interface that will be used to route the traffic. To
 accomplish this, create a file named
 /etc/sysconfig/network/ifcfg-alice.0
 with the following content:

NAME="Xen guest alice"
BOOTPROTO="static"
STARTMODE="hotplug"

	
 Edit the file
 /etc/sysconfig/SuSEfirewall2 and add
 the following configurations:

	
 Add alice.0 to the devices in FW_DEV_EXT:

FW_DEV_EXT="br0 alice.0"

	
 Switch on the routing in the firewall:

FW_ROUTE="yes"

	
 Tell the firewall which address should be forwarded:

FW_FORWARD="192.168.1.21/32,0/0"

	
 Finally, restart the firewall with the command:

tux > sudo systemctl restart SuSEfirewall2

	
 Add a static route to the interface of alice. To accomplish
 this, add the following line to the end of
 /etc/sysconfig/network/routes:

192.168.1.21 - - alice.0

	
 To make sure that the switches and routers that the VM Host Server is
 connected to know about the routed interface, activate
 proxy_arp on earth. Add the following lines
 to /etc/sysctl.conf:

net.ipv4.conf.default.proxy_arp = 1
net.ipv4.conf.all.proxy_arp = 1

	
 Activate all changes with the commands:

tux > sudo systemctl restart systemd-sysctl wicked

	
 Proceed with configuring the Xen configuration of the VM Guest by
 changing the vif interface configuration for alice as described in
 Section “XL—Xen Management Tool”. Make the following changes to the
 text file you generate during the process:

	
 Remove the snippet

bridge=br0

	
 And add the following one:

vifname=vifalice.0

 or

vifname=vifalice.0=emu

 for a fully virtualized domain.

	
 Change the script that is used to set up the interface to the
 following:

script=/etc/xen/scripts/vif-route-ifup

	
 Activate the new configuration and start the VM Guest.

	
 The remaining configuration tasks must be accomplished from inside the
 VM Guest.

	
 Open a console to the VM Guest with xl consoleDOMAIN and log in.

	
 Check that the guest IP is set to 192.168.1.21.

	
 Provide VM Guest with a host route and a default gateway to the
 VM Host Server. Do this by adding the following lines to
 /etc/sysconfig/network/routes:

192.168.1.20 - - eth0
default 192.168.1.20 - -

	
 Finally, test the network connection from the VM Guest to the world
 outside and from the network to your VM Guest.

Xen Virtualization Architecture

 The following graphic depicts a virtual machine host with four virtual
 machines. The Xen hypervisor is shown as running directly on the
 physical hardware platform. Note that the controlling domain is also a
 virtual machine, although it has several additional management tasks
 compared to all the other virtual machines.

Figure 2.1. Xen Virtualization Architecture
[image: Xen Virtualization Architecture]

 On the left, the virtual machine host’s Dom0 is shown running the
 openSUSE Leap operating system. The two virtual machines shown in the
 middle are running paravirtualized operating systems. The virtual machine
 on the right shows a fully virtual machine running an unmodified
 operating system, such as the latest version of Microsoft Windows/Server.

Import Xen Domain Configuration into libvirt

xen2libvirt is a command line tool to import legacy
 Xen domain configuration into the libvirt virtualization library
 (see The Virtualization book for more information on libvirt).
 xen2libvirt provides an easy way to import domains managed by the
 deprecated xm/xend tool stack into the new
 libvirt/libxl tool stack. Several domains can be imported at once
 using its --recursive mode
xen2libvirt is included in the
 xen-tools package. If needed, install it with

tux > sudo zypper install xen-tools
xen2libvirt general syntax is

xen2libvirt <options> /path/to/domain/config

 where options can be:

	-h, --help
	
 Prints short information about xen2libvirt usage.

	-c, --convert-only
	
 Converts the domain configuration to the libvirt XML format, but
 does not do the import to libvirt.

	-r, --recursive
	
 Converts and/or imports all domains configuration recursively, starting
 at the specified path.

	-f, --format
	
 Specifies the format of the source domain configuration. Can be either
 xm, or sexpr (S-expression
 format).

	-v, --verbose
	
 Prints more detailed information about the import process.

Example B.1. Converting Xen Domain Configuration to libvirt

 Suppose you have a Xen domain managed with xm
 with the following configuration saved in
 /etc/xen/sle12.xm:

kernel = "/boot/vmlinuz-2.6-xenU"
 memory = 128
 name = "SLE12"
 root = "/dev/hda1 ro"
 disk = ["file:/var/xen/sle12.img,hda1,w"]

 Convert it to libvirt XML without importing it, and look at its
 content:

tux > sudo xen2libvirt -f xm -c /etc/xen/sle12.xm > /etc/libvirt/qemu/sles12.xml
 # cat /etc/libvirt/qemu/sles12.xml
 <domain type='xen'>
 <name>SLE12</name>
 <uuid>43e1863c-8116-469c-a253-83d8be09aa1d</uuid>
 <memory unit='KiB'>131072</memory>
 <currentMemory unit='KiB'>131072</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <os>
 <type arch='x86_64' machine='xenpv'>linux</type>
 <kernel>/boot/vmlinuz-2.6-xenU</kernel>
 </os>
 <clock offset='utc' adjustment='reset'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/var/xen/sle12.img'/>
 <target dev='hda1' bus='xen'/>
 </disk>
 <console type='pty'>
 <target type='xen' port='0'/>
 </console>
 </devices>
 </domain>

 To import the domain into libvirt, you can either run the same
 xen2libvirt command without the -c
 option, or use the exported file
 /etc/libvirt/qemu/sles12.xml and define a new
 Xen domain using virsh:

tux > sudo virsh define /etc/libvirt/qemu/sles12.xml

Adding SR-IOV Devices

 Single Root I/O Virtualization (SR-IOV) capable
 PCIe devices can replicate their
 resources, so they appear to be multiple devices. Each of these
 "pseudo-devices" can be assigned to a VM Guest.

SR-IOV is an industry specification that was
 created by the Peripheral Component Interconnect Special Interest Group
 (PCI-SIG) consortium. It introduces physical functions (PF) and virtual
 functions (VF). PFs are full PCIe
 functions used to manage and configure the device. PFs also can move
 data. VFs lack the configuration and management part—they only can
 move data and a reduced set of configuration functions. Since VFs do not
 have all PCIe functions, the host
 operating system or the Hypervisor must
 support SR-IOV to be able to access and
 initialize VFs. The theoretical maximum for VFs is 256 per device
 (consequently the maximum for a dual-port Ethernet card would be 512). In
 practice this maximum is much lower, since each VF consumes resources.

Requirements

 The following requirements must be met to be able to use
 SR-IOV:

	
 An SR-IOV-capable network card (as of
 openSUSE Leap15.0, only network cards support
 SR-IOV)

	
 An AMD64/Intel 64 host supporting hardware virtualization (AMD-V or Intel
 VT-x)

	
 A chipset that supports device assignment (AMD-Vi or Intel
 VT-d)

	
 libvirt-0.9.10 or better

	SR-IOV drivers must be loaded and configured on
 the host system

	
 A host configuration that meets the requirements listed at
 Requirements for VFIO and SR-IOV

	
 A list of the PCI addresses of the VF(s) that will be assigned to
 VM Guests

Checking if a Device is SR-IOV-Capable

 The information whether a device is SR-IOV-capable can be obtained from
 its PCI descriptor by running lspci. A device that
 supports SR-IOV reports a capability similar to
 the following:

Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)

Adding an SR-IOV Device at VM Guest Creation

 Before adding an SR-IOV device to a VM Guest when initially
 setting it up, the VM Host Server already needs to be configured as described
 in Section “Loading and Configuring the SR-IOV Host Drivers”.

Loading and Configuring the SR-IOV Host Drivers

 To be able to access and initialize VFs, an SR-IOV-capable driver needs
 to be loaded on the host system.

	
 Before loading the driver, make sure the card is properly detected by
 running lspci. The following example shows the
 lspci output for the dual-port Intel 82576NS
 network card:

tux > sudo /sbin/lspci | grep 82576
01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)

 In case the card is not detected, it is likely that the hardware
 virtualization support in the BIOS/EFI has not been enabled.

	
 Check whether the SR-IOV driver is already
 loaded by running lsmod. In the following example a
 check for the igb driver (for the Intel 82576NS network card) returns
 a result. That means the driver is already loaded. If the command
 returns nothing, the driver is not loaded.

tux > sudo /sbin/lsmod | egrep "^igb "
igb 185649 0

	
 Skip this step if the driver is already loaded.

 If the SR-IOV driver is not yet loaded, the
 non-SR-IOV driver needs to be removed first,
 before loading the new driver. Use rmmod to unload
 a driver. The following example unloads the
 non-SR-IOV driver for the Intel 82576NS network
 card:

tux > sudo /sbin/rmmod igbvf

 Load the SR-IOV driver subsequently using
 the modprobe command—the VF parameter
 (max_vfs) is mandatory:

tux > sudo /sbin/modprobe igb max_vfs=8

 Or load the driver via SYSFS:

 Find the PCI ID of the physical NIC by listing Ethernet devices:

tux > sudo lspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)

 To enable VFs, echo the number of desired VFs to load to the
 sriov_numvfs parameter:

tux > sudo echo 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs
Verify that the VF NIC was loaded:
tux > sudo lspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
06:08.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk) (rev 10)
Obtain the maximum number of VFs available:
tux > sudo lspci -vvv -s 06:00.1 | grep 'Initial VFs'
 Initial VFs: 32, Total VFs: 32, Number of VFs: 0,
Function Dependency Link: 01

	
 Create a before.service file which loads VF via
 SYSFS on boot:

[Unit]
Before=
After=network-online.target
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/bin/bash -c "echo 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs"
beware, executable is run directly, not through a shell, check the man pages
systemd.service and systemd.unit for full syntax
[Install]
target in which to start the service
WantedBy=multi-user.target
#WantedBy=graphical.target

And copy it to /etc/systemd/system.

 Additionally, it is required to create another service file
 (after-local.service) pointing to
 /etc/init.d/after.local script that detaches the
 NIC prior to starting the VM, otherwise the VM would fail to start:

[Unit]
Description=/etc/init.d/after.local Compatibility
After=libvirtd.service
Requires=libvirtd.service
[Service]
Type=oneshot
ExecStart=/etc/init.d/after.local
RemainAfterExit=true

[Install]
WantedBy=multi-user.target

And copy it to /etc/systemd/system.

#! /bin/sh
#
Copyright (c) 2010 SuSE LINUX Products GmbH, Germany. All rights reserved.
...
virsh nodedev-detach pci_0000_06_08_0

Then save it as /etc/init.d/after.local.

	
 Reboot the machine and check if the SR-IOV driver is loaded by
 re-running the lspci command from the first step of
 this procedure. If the SR-IOV driver was loaded successfully you
 should see additional lines for the VFs:

01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
01:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
01:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
01:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
[...]
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network Connection (rev 01)
04:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
04:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
04:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
[...]

Adding a VF Network Device to an Existing VM Guest

 When the SR-IOV hardware is properly set up on
 the VM Host Server, you can add VFs to VM Guests. To do so, you need to
 collect some data first.

 Note: The following procedure is using example data. Make sure to
 replace it by appropriate data from your setup.

	
 Use the virsh nodedev-list command to get the PCI
 address of the VF you want to assign and its corresponding PF.
 Numerical values from the lspci output shown in
 Section “Loading and Configuring the SR-IOV Host Drivers” (for example
 01:00.0 or 04:00.1) are
 transformed by adding the prefix "pci_0000_" and by replacing colons
 and dots with underscores. So a PCI ID listed as "04:00.0" by
 lspci is listed as "pci_0000_04_00_0" by virsh. The
 following example lists the PCI IDs for the second port of the Intel
 82576NS network card:

tux > sudo virsh nodedev-list | grep 0000_04_
pci_0000_04_00_0
pci_0000_04_00_1
pci_0000_04_10_0
pci_0000_04_10_1
pci_0000_04_10_2
pci_0000_04_10_3
pci_0000_04_10_4
pci_0000_04_10_5
pci_0000_04_10_6
pci_0000_04_10_7
pci_0000_04_11_0
pci_0000_04_11_1
pci_0000_04_11_2
pci_0000_04_11_3
pci_0000_04_11_4
pci_0000_04_11_5

 The first two entries represent the PFs, whereas the other entries
 represent the VFs.

	
 Get more data that will be needed by running the command
 virsh nodedev-dumpxml on the PCI ID of the VF you
 want to add:

tux > sudo virsh nodedev-dumpxml pci_0000_04_10_0
<device>
 <name>pci_0000_04_10_0</name>
 <parent>pci_0000_00_02_0</parent>
 <capability type='pci'>
 <domain>0</domain>
 <bus>4</bus>
 <slot>16</slot>
 <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='phys_function'>
 <address domain='0x0000' bus='0x04' slot='0x00' function='0x0'/>
 </capability>
 </capability>
</device>

 The following data is needed for the next step:

	
 <domain>0</domain>

	
 <bus>4</bus>

	
 <slot>16</slot>

	
 <function>0</function>

	
 Create a temporary XML file (for example
 /tmp/vf-interface.xml containing the data
 necessary to add a VF network device to an existing VM Guest. The
 minimal content of the file needs to look like the following:

<interface type='hostdev'>[image: 1]
 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'2/>[image: 2]
 </source>
</interface>
	[image: 1]
	
 VFs do not get a fixed MAC address; it changes every time the host
 reboots. When adding network devices the “traditional”
 way with <hostdev>, it would require to reconfigure the
 VM Guest's network device after each reboot of the host, because of
 the MAC address change. To avoid this kind of problem, libvirt
 introduced the “interface type='hostdev'” directive,
 which sets up network-specific data before
 assigning the device.

	[image: 2]
	
 Specify the data you acquired in the previous step here.

	
 In case a device is already attached to the host, it cannot be
 attached to a guest. To make it available for guests, detach it from
 the host first:

tux > virsh nodedev-detach pci_0000_04_10_0

	
 Last, add the VF interface to an existing VM Guest:

tux > virsh attach-device GUEST /tmp/vf-interface.xml --OPTION
GUEST needs to be replaced by the domain
 name, id or uuid of the VM Guest and
 --OPTION can be one of the following:

	
 --persistent

	
 This option will always add the device to the domain's persistent
 XML. In addition, if the domain is running, it will be hotplugged.

	
 --config

	
 This option will only affect the persistent XML, even if the domain
 is running. The device will only show up in the guest on next boot.

	
 --live

	
 This option will only affect a running domain. If the domain is
 inactive, the operation will fail. The device is not persisted in
 the XML and will not be available in the guest on next boot.

	
 --current

	
 This option affects the current state of the domain. If the domain
 is inactive, the device is added to the persistent XML and will be
 available on next boot. If the domain is active, the device is
 hotplugged but not added to the persistent XML.

 To detach a VF interface, use the virsh
 detach-device command, which also takes the options listed
 above.

Dynamic Allocation of VFs from a Pool

 If you define the PCI address of a VF into a guest's configuration
 statically as described in
 Section “Adding a VF Network Device to an Existing VM Guest”, it is hard to migrate
 such guest to another host. The host must have identical hardware in the
 same location on the PCI bus, or the guest configuration must be
 modified prior to each start.

 Another approach is to create a libvirt network with a device pool
 that contains all the VFs of an SR-IOV device.
 The guest then references this network, and each time it is started, a
 single VF is dynamically allocated to it. When the guest is stopped, the
 VF is returned to the pool, available for another guest.

Defining Network with Pool of VFs on VM Host Server

 The following example of network definition creates a pool of all VFs
 for the SR-IOV device with its physical function
 (PF) at the network interface eth0 on the host:

<network>
 <name>passthrough</name>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 </forward>
 </network>

 To use this network on the host, save the above code to a file, for
 example /tmp/passthrough.xml, and execute the
 following commands. Remember to replace eth0 with the real network
 interface name of your SR-IOV device's PF:

tux > virsh net-define /tmp/passthrough.xml
tux > virsh net-autostart passthrough
tux > virsh net-start passthrough

Configuring VM Guest to Use VF from the Pool

 The following example of guest device interface definition uses a VF of
 the SR-IOV device from the pool created in
 Section “Defining Network with Pool of VFs on VM Host Server”. libvirt automatically
 derives the list of all VFs associated with that PF the first time the
 guest is started.

<interface type='network'>
 <source network='passthrough'>
</interface>

 To verify the list of associated VFs, run virsh net-dumpxml
 passthrough on the host after the first guest that uses the
 network with the pool of VFs starts.

<network connections='1'>
 <name>passthrough</name>
 <uuid>a6a26429-d483-d4ed-3465-4436ac786437</uuid>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x5'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x7'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x5'/>
 </forward>
 </network>

Chapter 22. Administrative Tasks

The Boot Loader Program

 The boot loader controls how the virtualization software boots and runs.
 You can modify the boot loader properties by using YaST, or by
 directly editing the boot loader configuration file.

 The YaST boot loader program is located at YaST+System+Boot
 Loader. Click the Bootloader
 Options tab and select the line containing the Xen kernel
 as the Default Boot Section.

Figure 22.1. Boot Loader Settings
[image: Boot Loader Settings]

 Confirm with OK. Next time you boot the host, it will
 be ready to provide the Xen virtualization environment.

 You can use the Boot Loader program to specify functionality, such as:

	
 Pass kernel command line parameters.

	
 Specify the kernel image and initial RAM disk.

	
 Select a specific hypervisor.

	
 Pass additional parameters to the hypervisor. See
 http://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
 for their complete list.

 You can customize your virtualization environment by editing the
 /etc/default/grub file. Add the following line to
 this file:
 GRUB_CMDLINE_XEN="<boot_parameters>". Do not
 forget to run grub2-mkconfig -o /boot/grub2/grub.cfg
 after editing the file.

Using RADOS Block Devices with libvirt

 RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting,
 replication, and data consistency. You can use an RBD from your
 libvirt-managed VM Guests similarly to how you use other block devices.

Automatic Start of Guest Domains

 To make a guest domain start automatically after the host system boots,
 follow these steps:

	
 Create the domain configuration file if it does not exist, and save it
 in the /etc/xen/ directory, for example
 /etc/xen/domain_name.cfg.

	
 Make a symbolic link of the guest domain configuration file in the
 auto/ subdirectory.

tux > sudo ln -s /etc/xen/domain_name.cfg /etc/xen/auto/domain_name.cfg

	
 On the next system boot, the guest domain defined in
 domain_name.cfg will be started.

Part III. Hypervisor-Independent Features

Event Actions

 In the guest domain configuration file, you can define actions to be
 performed on a predefined set of events. For example, to tell the domain
 to restart itself after it is powered off, include the following line in
 its configuration file:

on_poweroff="restart"

 A list of predefined events for a guest domain follows:

List of Events
	on_poweroff
	
 Specifies what should be done with the domain if it shuts itself down.

	on_reboot
	
 Action to take if the domain shuts down with a reason code requesting
 a reboot.

	on_watchdog
	
 Action to take if the domain shuts down because of a Xen watchdog
 timeout.

	on_crash
	
 Action to take if the domain crashes.

 For these events, you can define one of the following actions:

List of Related Actions
	destroy
	
 Destroy the domain.

	restart
	
 Destroy the domain and immediately create a new domain with the same
 configuration.

	rename-restart
	
 Rename the domain that terminated, and then immediately create a new
 domain with the same configuration as the original.

	preserve
	
 Keep the domain. It can be examined, and later destroyed with
 xl destroy.

	coredump-destroy
	
 Write a core dump of the domain to
 /var/xen/dump/NAME and then destroy the domain.

	coredump-restart
	
 Write a core dump of the domain to
 /var/xen/dump/NAME and then restart the domain.

Monitoring Xen

 For a regular operation of many virtual guests, having a possibility to
 check the sanity of all the different VM Guest systems is
 indispensable. Xen offers several tools besides the system tools to
 gather information about the system.

Monitoring the VM Host Server

 Basic monitoring of the VM Host Server (I/O and CPU) is available via the
 Virtual Machine Manager. Refer to
 Section “Monitoring with Virtual Machine Manager” for details.

Monitor Xen with xentop

 The preferred terminal application to gather information about Xen
 virtual environment is xentop. Unfortunately, this
 tool needs a rather broad terminal, else it inserts line breaks into the
 display.

xentop has several command keys that can give you
 more information about the system that is monitored. Some of the more
 important are:

	D
	
 Change the delay between the refreshes of the screen.

	N
	
 Also display network statistics. Note, that only standard
 configurations will be displayed. If you use a special configuration
 like a routed network, no network will be displayed.

	B
	
 Display the respective block devices and their cumulated usage count.

 For more information about xentop see the manual page
 man 1 xentop.

 virt-top

 libvirt offers the hypervisor-agnostic tool virt-top,
 which is recommended for monitoring VM Guests. See Section “Monitoring with virt-top” for details.

Additional Tools

 There are many system tools that also help monitoring or debugging a
 running openSUSE system. Many of these are covered in
 “System Monitoring Utilities” (↑System Analysis and Tuning Guide). Especially useful for monitoring a
 virtualization environment are the following tools:

	ip
	
 The command line utility ip may be used to monitor
 arbitrary network interfaces. This is especially useful if you have
 set up a network that is routed or applied a masqueraded network. To
 monitor a network interface with the name
 alice.0, run the following command:

tux > watch ip -s link show alice.0

	bridge
	
 In a standard setup, all the Xen VM Guest systems are
 attached to a virtual network bridge. bridge allows
 you to determine the connection between the bridge and the virtual
 network adapter in the VM Guest system. For example, the output
 of bridge link may look like the following:

2: eth0 state DOWN : <NO-CARRIER, ...,UP> mtu 1500 master br0
8: vnet0 state UNKNOWN : <BROADCAST, ...,LOWER_UP> mtu 1500 master virbr0 \
 state forwarding priority 32 cost 100

 This shows that there are two virtual bridges defined on the system. One
 is connected to the physical Ethernet device eth0, the
 other one is connected to a VLAN interface vnet0.

	iptables-save
	
 Especially when using masquerade networks, or if several Ethernet
 interfaces are set up together with a firewall setup, it may be
 helpful to check the current firewall rules.

 The command iptables may be used to check all the
 different firewall settings. To list all the rules of a chain, or
 even of the complete setup, you may use the commands
 iptables-save or iptables -S.

Accessing the VM Guest via Console

 VM Guests can be accessed via a VNC connection (graphical console) or, if
 supported by the guest operating system, via a serial console.

Opening a Graphical Console

 Opening a graphical console to a VM Guest lets you interact with the
 machine like a physical host via a VNC connection. If accessing the VNC
 server requires authentication, you are prompted to enter a user name (if
 applicable) and a password.

 When you click into the VNC console, the cursor is “grabbed”
 and cannot be used outside the console anymore. To release it, press
 Alt+Ctrl.

Seamless (Absolute) Cursor Movement

 To prevent the console from grabbing the cursor and to enable seamless
 cursor movement, add a tablet input device to the VM Guest. See
 Section “Enabling Seamless and Synchronized Mouse Pointer Movement” for more information.

 Certain key combinations such as Ctrl+Alt+Del are
 interpreted by the host system and are not passed to the VM Guest. To pass
 such key combinations to a VM Guest, open the Send Key
 menu from the VNC window and choose the desired key combination entry. The
 Send Key menu is only available when using Virtual Machine Manager and
 virt-viewer. With Virtual Machine Manager, you can alternatively use the
 “sticky key” feature as explained in
 Passing Key Combinations to Virtual Machines.

Supported VNC Viewers

 Principally all VNC viewers can connect to the console of a VM Guest.
 However, if you are using SASL authentication and/or TLS/SSL connection to
 access the guest, the options are limited. Common VNC viewers such as
 tightvnc or tigervnc support neither
 SASL authentication nor TLS/SSL. The only supported alternative to Virtual Machine Manager
 and virt-viewer is Remmina (refer to
 “Remmina: the Remote Desktop Client” (Section “Remote Access with VNC”, ↑Reference)).

Opening a Graphical Console with Virtual Machine Manager

	
 In the Virtual Machine Manager, right-click a VM Guest entry.

	
 Choose Open from the pop-up menu.

Opening a Graphical Console with virt-viewer

virt-viewer is a simple VNC viewer with added
 functionality for displaying VM Guest consoles. For example, it can be
 started in “wait” mode, where it waits for a VM Guest to
 start before it connects. It also supports automatically reconnecting to a
 VM Guest that is rebooted.

virt-viewer addresses VM Guests by name, by ID or by
 UUID. Use virshlist --all to get this
 data.

 To connect to a guest that is running or paused, use either the ID, UUID,
 or name. VM Guests that are shut off do not have an ID—you can only
 connect to them by UUID or name.

	Connect to guest with the ID 8
	tux > virt-viewer 8

	Connect to the inactive guest named sles12; the
 connection window will open once the guest starts
	tux > virt-viewer --wait sles12

 With the --wait option, the connection will be upheld
 even if the VM Guest is not running at the moment. When the guest
 starts, the viewer will be launched.

 For more information, see virt-viewer--help or man 1 virt-viewer.

Password Input on Remote connections with SSH

 When using virt-viewer to open a connection to a
 remote host via SSH, the SSH password needs to be entered twice. The
 first time for authenticating with libvirt, the second time for
 authenticating with the VNC server. The second password needs to be
 provided on the command line where virt-viewer was started.

Opening a Serial Console

 Accessing the graphical console of a virtual machine requires a graphical
 environment on the client accessing the VM Guest. As an alternative,
 virtual machines managed with libvirt can also be accessed from the shell
 via the serial console and virsh. To open a serial
 console to a VM Guest named “sles12”, run the following
 command:

tux > virsh console sles12
virsh console takes two optional flags:
 --safe ensures exclusive access to the console,
 --force disconnects any existing sessions before
 connecting. Both features need to be supported by the guest operating
 system.

 Being able to connect to a VM Guest via serial console requires that the
 guest operating system supports serial console access and is properly
 supported. Refer to the guest operating system manual for more information.

Enabling Serial Console Access for SUSE Linux Enterprise and openSUSE Guests

 Serial console access in SUSE Linux Enterprise and openSUSE is disabled by default. To
 enable it, proceed as follows:

	SLES 12 / openSUSE
	
 Launch the YaST Boot Loader module and switch to the Kernel
 Parameters tab. Add console=ttyS0 to the
 field Optional Kernel Command Line Parameter.

	SLES 11
	
 Launch the YaST Boot Loader module and select the boot entry for
 which to activate serial console access. Choose Edit
 and add console=ttyS0 to the field Optional
 Kernel Command Line Parameter. Additionally, edit
 /etc/inittab and uncomment the line with the
 following content:

#S0:12345:respawn:/sbin/agetty -L 9600 ttyS0 vt102

Effect of Cache Modes on Live Migration

 The caching of storage data and metadata restricts the configurations
 that support live migration. Currently, only raw, and
 qcow2 image formats can be used for live migration. If a
 clustered file system is used, all cache modes support live migration.
 Otherwise the only cache mode that supports live migration on read/write
 shared storage is none.

 The libvirt management layer includes checks for
 migration compatibility based on several factors. If the guest
 storage is hosted on a clustered file system, is read-only or is marked
 shareable, then the cache mode is ignored when determining if migration
 can be allowed. Otherwise libvirt will not allow
 migration unless the cache mode is set to none.
 However, this restriction can be overridden with the
 “unsafe” option to the migration APIs, which is also
 supported by virsh, as for example in

tux > virsh migrate --live --unsafe
Tip

 The cache mode none is required for the AIO mode setting
 native. If another cache mode is used, then the
 AIO mode will silently be switched back to the default threads. The
 guest flush within the host is implemented using
 fdatasync().

KVM Virtualization Architecture

 This full virtualization solution consists of two main components:

	
 A set of kernel modules
 (kvm.ko, kvm-intel.ko,
 and kvm-amd.ko) that provides the core
 virtualization infrastructure and processor-specific drivers.

	
 A user space program
 (qemu-system-ARCH) that provides
 emulation for virtual devices and control mechanisms to manage VM Guests
 (virtual machines).

 The term KVM more properly refers to the kernel level virtualization
 functionality, but is in practice more commonly used to refer to the
 user space component.

Figure 3.1. KVM Virtualization Architecture
[image: KVM Virtualization Architecture]

Hyper-V Emulation Support

 QEMU can provide certain Hyper-V hypercalls for Windows* guests
 to partly emulate a Hyper-V environment. This can be used to achieve
 better behavior for Windows* guests that are Hyper-V enabled.

Using Macvtap to Share VM Host Server Network Interfaces

 Macvtap provides direct attachment of a VM Guest virtual interface
 to a host network interface. The macvtap-based interface extends the
 VM Host Server network interface and has its own MAC address on the same
 Ethernet segment. Typically, this is used to make both the VM Guest
 and the VM Host Server show up directly on the switch that the VM Host Server is
 connected to.

Macvtap Cannot Be Used with a Linux Bridge

 Macvtap cannot be used with network interfaces already connected
 to a Linux bridge. Before attempting to create the macvtap interface,
 remove the interface from the bridge.

VM Guest to VM Host Server Communication with Macvtap

 When using macvtap, a VM Guest can communicate with other
 VM Guests, and with other external hosts on the network. But it
 cannot communicate with the VM Host Server on which the VM Guest runs.
 This is the defined behavior of macvtap, because of the way the
 VM Host Server's physical Ethernet is attached to the macvtap bridge.
 Traffic from the VM Guest into that bridge that is forwarded to
 the physical interface cannot be bounced back up to the VM Host Server's
 IP stack. Similarly, traffic from the VM Host Server's IP stack that is
 sent to the physical interface cannot be bounced back up to the
 macvtap bridge for forwarding to the VM Guest.

 Virtual network interfaces based on macvtap are supported by libvirt
 by specifying an interface type of direct. For example:

<interface type='direct'>
 <mac address='aa:bb:cc:dd:ee:ff'/>
 <source dev='eth0' mode='bridge'/>
 <model type='virtio'/>
 </interface>

 The operation mode of the macvtap device can be controlled with
 the mode attribute. The following lists show its possible
 values and a description for each:

	vepa: All VM Guest packets are sent to an external bridge. Packets
 whose destination is a VM Guest on the same VM Host Server as where the
 packet originates from are sent back to the VM Host Server by the VEPA
 capable bridge (today's bridges are typically not VEPA capable).

	bridge: Packets whose destination is on the same
 VM Host Server as where they originate from are directly delivered to the target
 macvtap device. Both origin and destination devices need to be in
 bridge mode for direct delivery. If either one of them
 is in vepa mode, a VEPA capable bridge is required.

	private: All packets are sent to the external bridge and will only
 be delivered to a target VM Guest on the same VM Host Server if they are
 sent through an external router or gateway and that device sends
 them back to the VM Host Server. This procedure is followed if either the
 source or destination device is in private mode.

	passthrough: A special mode that gives more power to the network
 interface. All packets will be forwarded to the interface, allowing
 virtio VM Guests to change the MAC address or set promiscuous mode
 to bridge the interface or create VLAN interfaces on top
 of it. Note that a network interface is not shareable in passthrough
 mode. Assigning an interface to a VM Guest will disconnect it from
 the VM Host Server. For this reason SR-IOV virtual functions are often
 assigned to the VM Guest in passthrough mode.

Connecting to a VM Host Server

 To connect to a hypervisor with libvirt, you need to
 specify a uniform resource identifier (URI). This URI is needed with
 virsh and virt-viewer (except when
 working as root on the VM Host Server) and is optional for the
 Virtual Machine Manager. Although the latter can be called with a connection parameter
 (for example, virt-manager -c qemu:///system), it also
 offers a graphical interface to create connection URIs. See
 Section “Managing Connections with Virtual Machine Manager” for details.

HYPERVISOR[image: 1]+PROTOCOL[image: 2]://USER@REMOTE[image: 3]/CONNECTION_TYPE[image: 4]
	[image: 1]
	
 Specify the hypervisor. openSUSE Leap currently supports the
 following hypervisors: test (dummy for testing),
 qemu (KVM), and xen (Xen).
 This parameter is mandatory.

	[image: 2]
	
 When connecting to a remote host, specify the protocol here. It can be
 one of: ssh (connection via SSH tunnel),
 tcp (TCP connection with SASL/Kerberos
 authentication), tls (TLS/SSL encrypted connection
 with authentication via x509 certificates).

	[image: 3]
	
 When connecting to a remote host, specify the user name and the remote host
 name. If no user name is specified, the user name that has called the
 command ($USER) is used. See below for more
 information. For TLS connections, the host name needs to be specified
 exactly as in the x509 certificate.

	[image: 4]
	
 When connecting to the QEMU/KVM
 hypervisor, two connection types are accepted: system
 for full access rights, or session for restricted
 access. Since session access is not supported on
 openSUSE Leap, this documentation focuses on system
 access.

Example Hypervisor Connection URIs
	
 test:///default

	
 Connect to the local dummy hypervisor. Useful for testing.

	qemu:///system or xen:///system
	
 Connect to the QEMU/Xen hypervisor on the local host having
 full access (type system).

	qemu+ssh://tux@mercury.example.com/system or
 xen+ssh://tux@mercury.example.com/system
	
 Connect to the QEMU/Xen hypervisor on the remote host
 mercury.example.com. The connection is established via an SSH tunnel.

	qemu+tls://saturn.example.com/system or xen+tls://saturn.example.com/system
	
 Connect to the QEMU/Xen hypervisor on the remote host
 mercury.example.com. The connection is established using TLS/SSL.

 For more details and examples, refer to the libvirt documentation at
 http://libvirt.org/uri.html.

User Names in URIs

 A user name needs to be specified when using Unix socket authentication
 (regardless of whether using the user/password authentication scheme or
 PolKit). This applies to all SSH and local connections.

 There is no need to specify a user name when using SASL authentication
 (for TCP or TLS connections) or when doing no additional server-side
 authentication for TLS connections. With SASL the user name will not be
 evaluated—you will be prompted for an SASL user/password
 combination in any case.

“system” Access for Non-Privileged Users

 As mentioned above, a connection to the QEMU hypervisor can be
 established using two different protocols: session
 and system. A “session” connection is
 spawned with the same privileges as the client program. Such a
 connection is intended for desktop virtualization, since it is
 restricted (for example no USB/PCI device assignments, no virtual
 network setup, limited remote access to libvirtd).

 The “system” connection intended for server virtualization
 has no functional restrictions but is, by default, only accessible by
 root. However, with the addition of the DAC (Discretionary
 Access Control) driver to libvirt it is now possible to grant
 non-privileged users “system” access. To grant
 “system” access to the user tux, proceed as
 follows:

Procedure 10.3. Granting “system” Access to a Regular User
	
 Enable access via Unix sockets as described in Section “Access Control for Unix Sockets with Permissions and Group Ownership”. In that
 example access to libvirt is granted to all members of the group
 libvirt and tux
 made a member of this group. This ensures that tux can connect
 using virsh or Virtual Machine Manager.

	
 Edit /etc/libvirt/qemu.conf and change the
 configuration as follows:

user = "tux"
group = "libvirt"
dynamic_ownership = 1

 This ensures that the VM Guests are started by tux and that
 resources bound to the guest (for example virtual disks) can be accessed
 and modified by tux.

	
 Make tux a member of the group kvm:

tux > sudo usermod --append --groups kvm tux

 This step is needed to grant access to /dev/kvm,
 which is required to start VM Guests.

	
 Restart libvirtd:

tux > sudo systemctl restart libvirtd

Managing Connections with Virtual Machine Manager

 The Virtual Machine Manager uses a Connection for every VM Host Server
 it manages. Each connection contains all VM Guests on the respective
 host. By default, a connection to the local host is already configured
 and connected.

 All configured connections are displayed in the Virtual Machine Manager main window.
 Active connections are marked with a small triangle, which you can click
 to fold or unfold the list of VM Guests for this
 connection.

 Inactive connections are listed gray and are marked with Not
 Connected. Either double-click or right-click it and choose
 Connect from the context menu. You can also
 Delete an existing connection from this menu.

Editing Existing Connections

 It is not possible to edit an existing connection. To change a
 connection, create a new one with the desired parameters and delete the
 “old” one.

 To add a new connection in the Virtual Machine Manager, proceed as follows:

	
 Choose File+Add
 Connection

	
 Choose the host's Hypervisor
 (Xen or QEMU/KVM)

	
 To set up a remote connection, choose Connect to remote host.
 For more information, see
 Section “Configuring Remote Connections”.

 In case of a remote connection, specify the
 Hostname of the remote machine in the format
 USERNAME@REMOTE _HOST.

Specifying a User Name

 There is no need to specify a user name for TCP and TLS connections: In
 these cases, it will not be evaluated. However, in the case of SSH
 connections, specifying a user name is necessary when you want to
 connect as a user other than
 root.

	
 If you do not want the connection to be automatically started when
 starting the Virtual Machine Manager, deactivate Autoconnect.

	
 Finish the configuration by clicking Connect.

Assigning a Host USB Device to a VM Guest

 Analogous to assigning host PCI devices (see Section “Assigning a Host PCI Device to a VM Guest”), you can directly assign host USB devices to guests.
 When the USB device is assigned to one VM Guest, it cannot be used on
 the host or by another VM Guest unless it is re-assigned.

Adding a USB Device with Virtual Machine Manager

 To assign a host USB device to VM Guest using Virtual Machine Manager, follow these steps:

	
 Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
 switch to the Details view with View+Details.

	
 Click Add Hardware and choose the USB Host
 Device category in the left panel. A list of available USB
 devices appears in the right part of the window.

Figure 13.13. Adding a USB Device
[image: Adding a USB Device]

	
 From the list of available USB devices, choose the one you want to
 pass to the guest. Confirm with Finish.
 The new USB device appears in the left pane of the
 Details view.

USB Device Removal

 To remove the host USB device assignment, click it in the left pane of
 the Details view and confirm with
 Remove.

Adding a USB Device with virsh

 To assign a USB device to VM Guest using virsh,
 follow these steps:

	
 Identify the host USB device to assign to the guest:

tux > sudolsusb
[...]
Bus 001 Device 003: ID 0557:2221 ATEN International Co., Ltd Winbond Hermon
[...]

 Note down the vendor and product IDs. In our example, the vendor ID is
 0557 and the product ID is 2221.

	
 Run virsh edit on your domain, and add the
 following device entry in the <devices>
 section using the values from the previous step:

<hostdev mode='subsystem' type='usb'>
 <source startupPolicy='optional'>
 <vendor id='0557'/>
 <product id='2221'/>
 </source>
</hostdev>
Vendor/Product or Device's Address

 Instead of defining the host device with <vendor/> and <product/> IDs, you
 can use the <address/> element as described for host PCI devices in Section “Adding a PCI Device with virsh”.

	
 Shut down the VM Guest and restart it to make the assigned USB device
 available.

SELinux

 If you are running SELinux on your VM Host Server, you need to disable it
 prior to starting the VM Guest with

tux > setsebool -P virt_use_sysfs 1

Live Migration

 The live migration process allows to transmit any virtual machine from
 one host system to another host system without any interruption in
 availability. It is possible to change hosts permanently or only during
 maintenance.

 The requirements for live migration:

	
 All requirements from
 Section “Migration Requirements” are
 applicable.

	
 Live migration is only possible between VM Host Servers with the same CPU
 features.

	AHCI interface,
 VirtFS feature, and the
 -mem-path command line option are not compatible with
 migration.

	
 The guest on the source and destination hosts must be started in the
 same way.

	-snapshot qemu command line option should not be used
 for migration (and this qemu command line option is
 not supported).

Support Status

 The postcopy mode is not yet supported in
 openSUSE Leap. It is released as a technology preview only. For
 more information about postcopy, see http://wiki.qemu.org/Features/PostCopyLiveMigration.

 More recommendations can be found at the following Web site:
 http://www.linux-kvm.org/page/Migration

 The live migration process has the following steps:

	
 The virtual machine instance is running on the source host.

	
 The virtual machine is started on the destination host in the frozen
 listening mode. The parameters used are the same as on the source host
 plus the -incoming
 tcp:IP:PORT
 parameter, where IP specifies the IP address
 and PORT specifies the port for listening to
 the incoming migration. If 0 is set as IP address, the virtual machine
 listens on all interfaces.

	
 On the source host, switch to the monitor console and use the
 migrate -d tcp:DESTINATION_IP:PORT
 command to initiate the migration.

	
 To determine the state of the migration, use the info
 migrate command in the monitor console on the source host.

	
 To cancel the migration, use the migrate_cancel
 command in the monitor console on the source host.

	
 To set the maximum tolerable downtime for migration in seconds, use the
 migrate_set_downtimeNUMBER_OF_SECONDS command.

	
 To set the maximum speed for migration in bytes per second, use the
 migrate_set_speedBYTES_PER_SECOND command.

File System Interface

 XenStore database content is represented by a virtual file system
 similar to /proc (for more information on
 /proc, see “The /proc File System” (Section “System Monitoring Utilities”, ↑System Analysis and Tuning Guide)). The
 tree has three main paths: /vm,
 /local/domain, and /tool.

	/vm - stores information about the VM Guest
 configuration.

	/local/domain - stores information about
 VM Guest on the local node.

	/tool - stores general information about various
 tools.

Tip

 Each VM Guest has two different ID numbers. The universal
 unique identifier (UUID) remains the same even if the
 VM Guest is migrated to another machine. The domain
 identifier (DOMID) is an identification number that
 represents a particular running instance. It typically changes when the
 VM Guest is migrated to another machine.

XenStore Commands

 The file system structure of the XenStore database can be operated
 with the following commands:

	
 xenstore-ls

	
 Displays the full dump of the XenStore database.

	
 xenstore-read
 path_to_xenstore_entry

	
 Displays the value of the specified XenStore entry.

	
 xenstore-exists
 xenstore_path

	
 Reports whether the specified XenStore path exists.

	
 xenstore-list
 xenstore_path

	
 Displays all the children entries of the specified XenStore
 path.

	
 xenstore-write
 path_to_xenstore_entry

	
 Updates the value of the specified XenStore entry.

	
 xenstore-rm
 xenstore_path

	
 Removes the specified XenStore entry or directory.

	
 xenstore-chmod
 xenstore_path
 mode

	
 Updates the read/write permission on the specified XenStore
 path.

	
 xenstore-control

	
 Sends a command to the xenstored back-end,
 such as triggering an integrity check.

 /vm

 The /vm path is indexed by the UUID of each
 VM Guest, and stores configuration information such as the number of
 virtual CPUs and the amount of allocated memory. There is a
 /vm/<uuid> directory for each
 VM Guest. To list the directory content, use
 xenstore-list.

tux > sudo xenstore-list /vm
00000000-0000-0000-0000-000000000000
9b30841b-43bc-2af9-2ed3-5a649f466d79-1

 The first line of the output belongs to Dom0, and the second one to
 a running VM Guest. The following command lists all the entries
 related to the VM Guest:

tux > sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1
image
rtc
device
pool_name
shadow_memory
uuid
on_reboot
start_time
on_poweroff
bootloader_args
on_crash
vcpus
vcpu_avail
bootloader
name

 To read a value of an entry, for example the number of virtual CPUs
 dedicated to the VM Guest, use xenstore-read:

tux > sudo xenstore-read /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/vcpus
1

 A list of selected /vm/<uuid> entries
 follows:

	
 uuid

	
 UUID of the VM Guest. It does not change during the migration
 process.

	
 on_reboot

	
 Specifies whether to destroy or restart the VM Guest in response
 to a reboot request.

	
 on_poweroff

	
 Specifies whether to destroy or restart the VM Guest in response
 to a halt request.

	
 on_crash

	
 Specifies whether to destroy or restart the VM Guest in response
 to a crash.

	
 vcpus

	
 Number of virtual CPUs allocated to the VM Guest.

	
 vcpu_avail

	
 Bitmask of active virtual CPUs for the VM Guest. The bitmask has
 several bits equal to the value of vcpus, with
 a bit set for each online virtual CPU.

	
 name

	
 The name of the VM Guest.

 Regular VM Guests (not Dom0) use the
 /vm/<uuid>/image path:

tux > sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/image
ostype
kernel
cmdline
ramdisk
dmargs
device-model
display

 An explanation of the used entries follows:

	
 ostype

	
 The OS type of the VM Guest.

	
 kernel

	
 The path on Dom0 to the kernel for the VM Guest.

	
 cmdline

	
 The kernel command line for the VM Guest used when booting.

	
 ramdisk

	
 The path on Dom0 to the RAM disk for the VM Guest.

	
 dmargs

	
 Shows arguments passed to the QEMU process. If you look at the
 QEMU process with ps, you should see the same
 arguments as in
 /vm/<uuid>/image/dmargs.

 /local/domain/<domid>

 This path is indexed by the running domain (VM Guest) ID, and
 contains information about the running VM Guest. Remember that the
 domain ID changes during VM Guest migration. The following entries
 are available:

	
 vm

	
 The path of the /vm directory for this
 VM Guest.

	
 on_reboot, on_poweroff, on_crash, name

	
 See identical options in Section “
 /vm
 ”

	
 domid

	
 Domain identifier for the VM Guest.

	
 cpu

	
 The current CPU to which the VM Guest is pinned.

	
 cpu_weight

	
 The weight assigned to the VM Guest for scheduling purposes.
 Higher weights use the physical CPUs more often.

 Apart from the individual entries described above, there are also
 several subdirectories under
 /local/domain/<domid>, containing specific
 entries. To see all entries available, refer to
 XenStore
 Reference.

	
 /local/domain/<domid>/memory

	
 Contains memory information.
 /local/domain/<domid>/memory/target
 contains target memory size for the VM Guest (in kilobytes).

	
 /local/domain/<domid>/console

	
 Contains information about a console used by the VM Guest.

	
 /local/domain/<domid>/backend

	
 Contains information about all back-end devices used by the
 VM Guest. The path has subdirectories of its own.

	
 /local/domain/<domid>/device

	
 Contains information about the front-end devices for the
 VM Guest.

	
 /local/domain/<domid>/device-misc

	
 Contains miscellaneous information about devices.

	
 /local/domain/<domid>/store

	
 Contains information about the VM Guest's store.

Part I. Introduction

Creating a Masqueraded Network Setup

 Creating a masqueraded network setup is quite similar to the routed
 setup. However, there is no proxy_arp needed, and some firewall rules are
 different. To create a masqueraded network to a guest dolly
 with the IP address 192.168.100.1 where the host has its external
 interface on br0, proceed as follows. For easier
 configuration, only the already installed guest is modified to use a
 masqueraded network:

Procedure 18.2. Configuring a masqueraded IPv4 VM Guest
	
 Shut down the VM Guest system with xl shutdownDOMAIN.

	
 Prepare the network configuration on the VM Host Server:

	
 Create a hotplug interface that will be used to route the traffic. To
 accomplish this, create a file named
 /etc/sysconfig/network/ifcfg-dolly.0
 with the following content:

NAME="Xen guest dolly"
BOOTPROTO="static"
STARTMODE="hotplug"

	
 Edit the file
 /etc/sysconfig/SuSEfirewall2 and add
 the following configurations:

	
 Add dolly.0 to the devices in FW_DEV_DMZ:

FW_DEV_DMZ="dolly.0"

	
 Switch on the routing in the firewall:

FW_ROUTE="yes"

	
 Switch on masquerading in the firewall:

FW_MASQUERADE="yes"

	
 Tell the firewall which network should be masqueraded:

FW_MASQ_NETS="192.168.100.1/32"

	
 Remove the networks from the masquerading exceptions:

FW_NOMASQ_NETS=""

	
 Finally, restart the firewall with the command:

tux > sudo systemctl restart SuSEfirewall2

	
 Add a static route to the interface of dolly. To
 accomplish this, add the following line to the end of
 /etc/sysconfig/network/routes:

192.168.100.1 - - dolly.0

	
 Activate all changes with the command:

tux > sudo systemctl restart wicked

	
 Proceed with configuring the Xen configuration of the
 VM Guest.

	
 Change the vif interface configuration for dolly as
 described in Section “XL—Xen Management Tool”.

	
 Remove the entry:

bridge=br0

	
 And add the following one:

vifname=vifdolly.0

	
 Change the script that is used to set up the interface to the
 following:

script=/etc/xen/scripts/vif-route-ifup

	
 Activate the new configuration and start the VM Guest.

	
 The remaining configuration tasks need to be accomplished from inside
 the VM Guest.

	
 Open a console to the VM Guest with xl consoleDOMAIN and log in.

	
 Check whether the guest IP is set to 192.168.100.1.

	
 Provide VM Guest with a host route and a default gateway to the
 VM Host Server. Do this by adding the following lines to
 /etc/sysconfig/network/routes:

192.168.1.20 - - eth0
default 192.168.1.20 - -

	
 Finally, test the network connection from the VM Guest to the
 outside world.

Remote Access Methods

 Some configurations, such as those that include rack-mounted servers,
 require a computer to run without a video monitor, keyboard, or mouse.
 This type of configuration is often called headless and
 requires the use of remote administration technologies.

 Typical configuration scenarios and technologies include:

	Graphical Desktop with X Window Server
	
 If a graphical desktop, such as GNOME, is installed on the virtual
 machine host, you can use a remote viewer, such as a VNC viewer. On a
 remote computer, log in and manage the remote guest environment by
 using graphical tools, such as tigervnc or
 virt-viewer.

	Text Only
	
 You can use the ssh command from a remote computer
 to log in to a virtual machine host and access its text-based console.
 You can then use the xl command to manage virtual
 machines, and the virt-install command to create new virtual machines.

VNC Viewer

 VNC viewer is used to view the environment of the running guest system in
 a graphical way. You can use it from Dom0 (known as local access or
 on-box access), or from a remote computer.

 You can use the IP address of a VM Host Server and a VNC viewer to view the
 display of this VM Guest. When a virtual machine is running, the VNC
 server on the host assigns the virtual machine a port number to be used
 for VNC viewer connections. The assigned port number is the lowest port
 number available when the virtual machine starts. The number is only
 available for the virtual machine while it is running. After shutting
 down, the port number might be assigned to other virtual machines.

 For example, if ports 1 and 2 and 4 and 5 are assigned to the running
 virtual machines, the VNC viewer assigns the lowest available port
 number, 3. If port number 3 is still in use the next time the virtual
 machine starts, the VNC server assigns a different port number to the
 virtual machine.

 To use the VNC viewer from a remote computer, the firewall must permit
 access to as many ports as VM Guest systems run from. This means from
 port 5900 and up. For example, to run 10 VM Guest
 systems, you need to open the TCP ports 5900:5910.

 To access the virtual machine from the local console running a VNC viewer
 client, enter one of the following commands:

	
 vncviewer ::590#

	
 vncviewer :#

is the VNC viewer port number assigned to
 the virtual machine.

 When accessing the VM Guest from a machine other than Dom0, use
 the following syntax:

tux > vncviewer 192.168.1.20::590#

 In this case, the IP address of Dom0 is 192.168.1.20.

Assigning VNC Viewer Port Numbers to Virtual Machines

 Although the default behavior of VNC viewer is to assign the first
 available port number, you should assign a specific VNC viewer
 port number to a specific virtual machine.

 To assign a specific port number on a VM Guest, edit the xl setting
 of the virtual machine and change the vnclisten to
 the desired value. Note that for example for port number 5902, specify 2
 only, as 5900 is added automatically:

vfb = ['vnc=1,vnclisten="localhost:2"']

 For more information regarding editing the xl settings of a guest
 domain, see Section “XL—Xen Management Tool”.

Tip

 Assign higher port numbers to avoid conflict with port numbers assigned
 by the VNC viewer, which uses the lowest available port number.

Using SDL instead of a VNC Viewer

 If you access a virtual machine's display from the virtual machine host
 console (known as local or on-box access), you should use SDL
 instead of VNC viewer. VNC viewer is faster for viewing desktops over a
 network, but SDL is faster for viewing desktops from the same computer.

 To set the default to use SDL instead of VNC, change the virtual
 machine's configuration information to the following. For instructions,
 see Section “XL—Xen Management Tool”.

vfb = ['sdl=1']

 Remember that, unlike a VNC viewer window, closing an SDL window
 terminates the virtual machine.

Chapter 8. Guest Installation

 A VM Guest consists of an image containing an operating system and data
 files and a configuration file describing the VM Guest's virtual hardware
 resources. VM Guests are hosted on and controlled by the VM Host Server. This
 section provides generalized instructions for installing a VM Guest.

 Virtual machines have few if any requirements above those required to run the
 operating system. If the operating system has not been optimized for the
 virtual machine host environment, it can only run on
 hardware-assisted virtualization computer hardware, in
 full virtualization mode, and requires specific device drivers to be loaded.
 The hardware that is presented to the VM Guest depends on the configuration
 of the host.

 You should be aware of any licensing issues related to running a single
 licensed copy of an operating system on multiple virtual machines. Consult
 the operating system license agreement for more information.

GUI-Based Guest Installation

 The New VM wizard helps you through the steps required to
 create a virtual machine and install its operating system. There are two
 ways to start it: Within Virtual Machine Manager, either click Create New Virtual
 Machine or choose File+New Virtual Machine. Alternatively, start
 YaST and choose Virtualization+Create Virtual Machines for Xen and KVM.

	
 Start the New VM wizard either from YaST or Virtual Machine Manager.

	
 Choose an installation source—either a locally available media or a
 network installation source. If you want to set up your VM Guest from an
 existing image, choose import existing disk image.

 On a VM Host Server running the Xen hypervisor, you can choose whether to
 install a paravirtualized or a fully virtualized guest. The respective
 option is available under Architecture Options.
 Depending on this choice, not all installation options may be available.

	
 Depending on your choice in the previous step, you need to provide the
 following data:

	
 Local Installation Media (ISO image or CDROM)

	
 Specify the path on the VM Host Server to an ISO image containing the
 installation data. If it is available as a volume in a libvirt storage
 pool, you can also select it using Browse. For more
 information, see Chapter 11, Managing Storage.

 Alternatively, choose a physical CD-ROM or DVD inserted in the optical
 drive of the VM Host Server.

	
 Network Installation (HTTP, FTP, or NFS)

	
 Provide the URL pointing to the installation source.
 Valid URL prefixes are, for example, ftp://,
 http://, https://, and
 nfs://.

 Under URL Options, provide a path to an
 auto-installation file (AutoYaST or Kickstart, for example) and kernel
 parameters. Having provided a URL, the operating system should be
 automatically detected correctly. If this is not the case, deselect
 Automatically Detect Operating System Based on
 Install-Media and manually select the OS
 Type and Version.

	
 Network Boot (PXE)

	
 When booting via PXE, you only need to provide the OS
 Type and the Version.

	
 Import Existing Disk Image

	
 To set up the VM Guest from an existing image, you need to specify the
 path on the VM Host Server to the image. If it is available as a volume in a
 libvirt storage pool, you can also select it using
 Browse. For more information, see
 Chapter 11, Managing Storage.

	
 Choose the memory size and number of CPUs for the new virtual machine.

	
 This step is omitted when Import an Existing Image is
 chosen in the first step.

 Set up a virtual hard disk for the VM Guest. Either create a new disk
 image or choose an existing one from a storage pool (for more information,
 see Chapter 11, Managing Storage). If you choose to create a
 disk, a qcow2 image will be created. By default, it is
 stored under /var/lib/libvirt/images.

 Setting up a disk is optional. If you are running a live system directly
 from CD or DVD, for example, you can omit this step by deactivating
 Enable Storage for this Virtual Machine.

	
 On the last screen of the wizard, specify the name for the virtual
 machine. To be offered the possibility to review and make changes to the
 virtualized hardware selection, activate Customize configuration
 before install. Find options to specify the network device under
 Network Selection.

 Click Finish.

	
 If you kept the defaults in the previous step, the installation will now
 start. If you selected Customize configuration before
 install, a VM Guest configuration dialog opens. For more
 information about configuring VM Guests, see
 Chapter 13, Configuring Virtual Machines.

 When you are done configuring, click Begin
 Installation.

Passing Key Combinations to Virtual Machines

 The installation starts in a Virtual Machine Manager console window. Some key combinations,
 such as Ctrl+Alt+F1, are recognized by the VM Host Server but are not
 passed to the virtual machine. To bypass the VM Host Server, Virtual Machine Manager provides the
 “sticky key” functionality. Pressing
 Ctrl, Alt, or
 Shift three times makes the key sticky, then you can
 press the remaining keys to pass the combination to the virtual machine.

 For example, to pass Ctrl+Alt+F2 to a Linux virtual
 machine, press Ctrl three times, then press
 Alt+F2. You
 can also press Alt three times, then press Ctrl+F2.

 The sticky key functionality is available in the Virtual Machine Manager during and after
 installing a VM Guest.

Xen Virtual Machine Clock Settings

 With Xen 4, the independent wallclock setting
 /proc/sys/xen/independent_wallclock used for time
 synchronization between Xen host and guest was removed. A new
 configuration option tsc_mode was introduced. It specifies
 a method of utilizing the timestamp counter to
 synchronize the guest time with the Xen server. Its default value '0'
 handles the vast majority of hardware and software environments.

 For more details on tsc_mode, see the
 xen-tscmode manual page (man 7
 xen-tscmode).

Appendix A. Appendix

Generating x509 Client/Server Certificates

 To be able to create x509 client and server certificates you
 need to issue them by a Certificate Authority (CA). It is recommended to
 set up an independent CA that only issues certificates for
 libvirt.

	
 Set up a CA as described in
 “Creating a Root CA” (Section “Managing X.509 Certification”, ↑Security Guide).

	
 Create a server and a client certificate as described in
 “Creating or Revoking User Certificates” (Section “Managing X.509 Certification”, ↑Security Guide). The Common
 Name (CN) for the server certificate must be the fully qualified host
 name, while the Common Name for the client certificate can be freely
 chosen. For all other fields stick with the defaults suggested by
 YaST.

 Export the client and server certificates to a temporary location (for
 example, /tmp/x509/) by performing the following
 steps:

	
 Select the certificate on the certificates tab.

	
 Choose Export+Export to
 File+Certificate and the Key Unencrypted in PEM
 Format, provide the Certificate
 Password and the full path and the file name under
 File Name, for example,
 /tmp/x509/server.pem or
 /tmp/x509/client.pem.

	
 Open a terminal and change to the directory where you have saved the
 certificate and issue the following commands to split it into
 certificate and key (this example splits the server key):

tux > csplit -z -f s_ server.pem '/-----BEGIN/' '{1}'
 mv s_00 servercert.pem
 mv s_01 serverkey.pem

	
 Repeat the procedure for each client and server certificate you want to
 export.

	
 Finally export the CA certificate by performing the following steps:

	
 Switch to the Description tab.

	
 Choose Advanced+Export to
 File+Only the Certificate in PEM Format and enter the full path and the file name under
 File Name, for example,
 /tmp/x509/cacert.pem.

Chapter 20. Block Devices in Xen

Mapping Physical Storage to Virtual Disks

 The disk(s) specification for a Xen domain in the domain configuration
 file is as straightforward as the following example:

disk = ['format=raw,vdev=hdc,access=ro,devtype=cdrom,target=/root/image.iso']

 It defines a disk block device based on the
 /root/image.iso disk image file. The disk will be seen
 as hdc by the guest, with read-only
 (ro) access. The type of the device is
 cdrom with raw format.

 The following example defines an identical device, but using simplified
 positional syntax:

disk = ['/root/image.iso,raw,hdc,ro,cdrom']

 You can include more disk definitions in the same line, each one separated
 by a comma. If a parameter is not specified, then its default value is
 taken:

disk = ['/root/image.iso,raw,hdc,ro,cdrom','/dev/vg/guest-volume,,hda','...']
List of Parameters
	target
	
 Source block device or disk image file path.

	format
	
 The format of the image file. Default is raw.

	vdev
	
 Virtual device as seen by the guest. Supported values are hd[x], xvd[x],
 sd[x] etc. See
 /usr/share/doc/packages/xen/misc/vbd-interface.txt
 for more details. This parameter is mandatory.

	access
	
 Whether the block device is provided to the guest in read-only or
 read-write mode. Supported values are ro or
 r for read-only, and rw or
 w for read/write access. Default is
 ro for devtype=cdrom, and
 rw for other device types.

	devtype
	
 Qualifies virtual device type. Supported value is
 cdrom.

	backendtype
	
 The back-end implementation to use. Supported values are
 phy, tap, and
 qdisk. Normally this option should not be specified as
 the back-end type is automatically determined.

	script
	
 Specifies that target is not a normal host path, but
 rather information to be interpreted by the executable program. The
 specified script file is looked for in
 /etc/xen/scripts if it does not point to an absolute
 path. These scripts are normally called
 block-<script_name>.

 For more information about specifying virtual disks, see
 /usr/share/doc/packages/xen/misc/xl-disk-configuration.txt.

Getting Information about the Guest System

 To get information about the guest system, use
 info. If used without any option, the list of possible
 options is printed. Options determine which part of the system will be
 analyzed:

	
 info version

	
 Shows the version of QEMU.

	
 info commands

	
 Lists available QMP commands.

	
 info network

	
 Shows the network state.

	
 info chardev

	
 Shows the character devices.

	
 info block

	
 Information about block devices, such as hard disks, floppy drives,
 or CD-ROMs.

	
 info blockstats

	
 Read and write statistics on block devices.

	
 info registers

	
 Shows the CPU registers.

	
 info cpus

	
 Shows information about available CPUs.

	
 info history

	
 Shows the command line history.

	
 info irq

	
 Shows the interrupt statistics.

	
 info pic

	
 Shows the i8259 (PIC) state.

	
 info pci

	
 Shows the PCI information.

	
 info tlb

	
 Shows virtual to physical memory mappings.

	
 info mem

	
 Shows the active virtual memory mappings.

	
 info jit

	
 Shows dynamic compiler information.

	
 info kvm

	
 Shows the KVM information.

	
 info numa

	
 Shows the NUMA information.

	
 info usb

	
 Shows the guest USB devices.

	
 info usbhost

	
 Shows the host USB devices.

	
 info profile

	
 Shows the profiling information.

	
 info capture

	
 Shows the capture (audio grab) information.

	
 info snapshots

	
 Shows the currently saved virtual machine snapshots.

	
 info status

	
 Shows the current virtual machine status.

	
 info mice

	
 Shows which guest mice are receiving events.

	
 info vnc

	
 Shows the VNC server status.

	
 info name

	
 Shows the current virtual machine name.

	
 info uuid

	
 Shows the current virtual machine UUID.

	
 info usernet

	
 Shows the user network stack connection states.

	
 info migrate

	
 Shows the migration status.

	
 info balloon

	
 Shows the balloon device information.

	
 info qtree

	
 Shows the device tree.

	
 info qdm

	
 Shows the qdev device model list.

	
 info roms

	
 Shows the ROMs.

	
 info migrate_cache_size

	
 Shows the current migration xbzrle (“Xor Based Zero Run Length
 Encoding”) cache size.

	
 info migrate_capabilities

	
 Shows the status of the various migration capabilities, such as xbzrle
 compression.

	
 info mtree

	
 Shows the VM Guest memory hierarchy.

	
 info trace-events

	
 Shows available trace-events and their status.

Time Stamp Counter

 The Time Stamp Counter (TSC) may be specified for each domain in the guest
 domain configuration file (for more information, see Section “Guest Domain Configuration File”).

 With the tsc_mode setting, you specify whether
 rdtsc instructions are executed “natively” (fast, but
 TSC-sensitive applications may sometimes run incorrectly) or emulated
 (always run correctly, but performance may suffer).

	tsc_mode=0 (default)
	
 Use this to ensure correctness while providing the best performance
 possible—for more information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt.

	tsc_mode=1 (always emulate)
	
 Use this when TSC-sensitive apps are running and worst-case
 performance degradation is known and acceptable.

	tsc_mode=2 (never emulate)
	
 Use this when all applications running in
 this VM are TSC-resilient and highest performance is required.

	tsc_mode=3 (PVRDTSCP)
	
 High-TSC-frequency applications may be paravirtualized (modified)
 to obtain both correctness and highest performance—any
 unmodified applications must be TSC-resilient.

 For background information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt.

HVM Features

 In Xen some features are only available for fully virtualized
 domains. They are not very often used, but still may be interesting in
 some environments.

Specify Boot Device on Boot

 Just as with physical hardware, it is sometimes desirable to boot a
 VM Guest from a different device than its own boot device. For fully
 virtual machines, it is possible to select a boot device with the
 boot parameter in a domain xl configuration file:

boot = BOOT_DEVICE
BOOT_DEVICE can be one of
 c for hard disk, d for CD-ROM, or
 n for Network/PXE. You can specify multiple options,
 and they will be attempted in the given order. For example,

boot = dc

 boots from CD-ROM, and falls back to the hard disk if CD-ROM is not
 bootable.

Changing CPUIDs for Guests

 To be able to migrate a VM Guest from one VM Host Server to a different
 VM Host Server, the VM Guest system may only use CPU
 features that are available on both VM Host Server systems. If the actual CPUs
 are different on both hosts, it may be necessary to hide some features
 before the VM Guest is started. This maintains the possibility to
 migrate the VM Guest between both hosts. For fully virtualized guests,
 this can be achieved by configuring the cpuid that is
 available to the guest.

 To gain an overview of the current CPU, have a look at
 /proc/cpuinfo. This contains all the important
 information that defines the current CPU.

 To redefine a CPU, first have a look at the respective cpuid definitions
 of the CPU vendor. These are available from:

	Intel
	
 http://www.intel.com/Assets/PDF/appnote/241618.pdf

cpuid = "host,tm=0,sse3=0"

 The syntax is a comma-separated list of key=value pairs, preceded by the
 word "host". A few keys take a numerical value, while all others take a
 single character which describes what to do with the feature bit. See
 man 5 xl.cfg for a complete list of cpuid keys. The
 respective bits may be changed by using the following values:

	1
	
 Force the corresponding bit to 1

	0
	
 Force the corresponding bit to 0

	x
	
 Use the values of the default policy

	k
	
 Use the values defined by the host

	s
	
 Like k, but preserve the value over migrations

 Note that counting bits is done from right to left, starting with bit
 0.

Increasing the Number of PCI-IRQs

 In case you need to increase the default number of PCI-IRQs available to
 Dom0 and/or VM Guest, you can do so by modifying the Xen
 kernel command line. Use the command
 extra_guest_irqs=DOMU_IRGS,DOM0_IRGS. The optional first
 number DOMU_IRGS is common for all
 VM Guests, while the optional second number
 DOM0_IRGS (preceded by a comma) is for
 Dom0. Changing the setting for VM Guest has no impact on
 Dom0 and vice versa. For example to change Dom0 without
 changing VM Guest, use

extra_guest_irqs=,512

Scripts for Managing Advanced Storage Scenarios

 There are scripts that can help with managing advanced storage scenarios
 such as disk environments provided by
 dmmd (“device mapper—multi
 disk”) including LVM environments built upon a software RAID set, or
 a software RAID set built upon an LVM environment. These scripts are part of
 the xen-tools package. After installation, they can be
 found in /etc/xen/scripts:

	
 block-dmmd

	
 block-drbd-probe

	
 block-npiv

 The scripts allow for external commands to perform some action, or
 series of actions of the block devices prior to serving them up to a
 guest.

 These scripts could formerly only be used with xl
 or libxl using the disk configuration syntax
 script=. They can now be used with libvirt by
 specifying the base name of the block script in the
 <source> element of the disk. For example:

<source dev='dmmd:md;/dev/md0;lvm;/dev/vgxen/lv-vm01'/>

Changing Available Memory

 If the virtual machine was started with the -balloon
 virtio option (the paravirtualized balloon device is therefore
 enabled), you can change the available memory dynamically. For
 more information about enabling the balloon device, see
 Section “Basic Installation with qemu-system-ARCH”.

 To get information about the balloon device in the monitor console and to
 determine whether the device is enabled, use the info
 balloon command:

(qemu) info balloon

 If the balloon device is enabled, use the balloonMEMORY_IN_MB command to set the requested
 amount of memory:

(qemu) balloon 400

Managing Devices

 To add a new disk while the guest is running (hotplug), use the
 drive_add and device_add commands.
 First define a new drive to be added as a device to bus 0:

(qemu) drive_add 0 if=none,file=/tmp/test.img,format=raw,if=disk1
OK

 You can confirm your new device by querying the block subsystem:

(qemu) info block
[...]
disk1: removable=1 locked=0 tray-open=0 file=/tmp/test.img ro=0 drv=raw \
encrypted=0 bps=0 bps_rd=0 bps_wr=0 iops=0 iops_rd=0 iops_wr=0

 After the new drive is defined, it needs to be connected to a device so
 that the guest can see it. The typical device would be a
 virtio-blk-pci or scsi-disk. To get
 the full list of available driver values, run:

(qemu) device_add ?
name "VGA", bus PCI
name "usb-storage", bus usb-bus
[...]
name "virtio-blk-pci", bus virtio-bus

 Now add the device

(qemu) device_add virtio-blk-pci,drive=disk1,id=myvirtio1

 and confirm with

(qemu) info pci
[...]
Bus 0, device 4, function 0:
 SCSI controller: PCI device 1af4:1001
 IRQ 0.
 BAR0: I/O at 0xffffffffffffffff [0x003e].
 BAR1: 32 bit memory at 0xffffffffffffffff [0x00000ffe].
 id "myvirtio1"
Tip

 Devices added with the device_add command can be
 removed from the guest with device_del. Enter
 help device_del on the QEMU monitor command line
 for more information.

 To release the device or file connected to the removable media device,
 use the ejectDEVICE
 command. Use the optional -f to force ejection.

 To change removable media (like CD-ROMs), use the
 changeDEVICE command. The
 name of the removable media can be determined using the info
 block command:

(qemu) info block
ide1-cd0: type=cdrom removable=1 locked=0 file=/dev/sr0 ro=1 drv=host_device
(qemu) change ide1-cd0 /path/to/image

Controlling Keyboard and Mouse

 It is possible to use the monitor console to emulate keyboard and mouse
 input if necessary. For example, if your graphical user interface
 intercepts some key combinations at low level (such as Ctrl+Alt+F1
 in X Window), you can still enter them using the sendkeyKEYS:

sendkey ctrl-alt-f1

 To list the key names used in the KEYS option,
 enter sendkey and press →|.

 To control the mouse, the following commands can be used:

	mouse_moveDXdy [DZ]

	
 Move the active mouse pointer to the specified coordinates dx, dy with
 the optional scroll axis dz.

	
 mouse_button
 VAL

	
 Change the state of the mouse buttons (1=left, 2=middle, 4=right).

	
 mouse_set
 INDEX

	
 Set which mouse device receives events. Device index numbers can be
 obtained with the info mice command.

Networking in QEMU

 Use the -netdev option in combination with
 -device to define a specific type of networking and a
 network interface card for your VM Guest. The syntax for the
 -netdev option is

-netdev type[,prop[=value][,...]]

 Currently, SUSE supports the following network types:
 user, bridge, and
 tap. For a complete list of -netdev
 sub-options, see the manual page (man 1 qemu).

Supported -netdev Sub-options
	
 bridge

	
 Uses a specified network helper to configure the TAP interface and attach
 it to a specified bridge. For more information, see
 Section “Bridged Networking”.

	
 user

	
 Specifies user-mode networking. For more information, see
 Section “User-Mode Networking”.

	
 tap

	
 Specifies bridged or routed networking. For more information, see
 Section “Bridged Networking”.

Defining a Network Interface Card

 Use -netdev together with the related
 -device option to add a new emulated network card:

tux > sudo qemu-system-x86_64 [...] \
-netdev tap[image: 1],id=hostnet0 \
-device virtio-net-pci[image: 2],netdev=hostnet0,vlan=1[image: 3],\
macaddr=00:16:35:AF:94:4B[image: 4],name=ncard1
	[image: 1]
	
 Specifies the network device type.

	[image: 2]
	
 Specifies the model of the network card. Use
 qemu-system-ARCH -device help and search for the
 Network devices:section to get the list of all network
 card models supported by QEMU on your platform.

 Currently, SUSE supports the models rtl8139,
 e1000 and its variants
 e1000-82540em, e1000-82544gc and
 e1000-82545em, and virtio-net-pci.
 To view a list of options for a specific driver, add
 help as a driver option:

tux > sudo qemu-system-x86_64 -device e1000,help
e1000.mac=macaddr
e1000.vlan=vlan
e1000.netdev=netdev
e1000.bootindex=int32
e1000.autonegotiation=on/off
e1000.mitigation=on/off
e1000.addr=pci-devfn
e1000.romfile=str
e1000.rombar=uint32
e1000.multifunction=on/off
e1000.command_serr_enable=on/off

	[image: 3]
	
 Connects the network interface to VLAN number 1. You can specify your own
 number—it is mainly useful for identification purpose. If you omit
 this suboption, QEMU uses the default 0.

	[image: 4]
	
 Specifies the Media Access Control (MAC) address for the network card. It
 is a unique identifier and you are advised to always specify it. If not,
 QEMU supplies its own default MAC address and creates a possible MAC
 address conflict within the related VLAN.

User-Mode Networking

 The -netdev user option instructs QEMU to use
 user-mode networking. This is the default if no networking mode is
 selected. Therefore, these command lines are equivalent:

tux > sudo qemu-system-x86_64 -hda /images/sles_base.raw
tux > sudo qemu-system-x86_64 -hda /images/sles_base.raw -netdev user,id=hostnet0

 This mode is useful if you want to allow the VM Guest to access the
 external network resources, such as the Internet. By default, no incoming
 traffic is permitted and therefore, the VM Guest is not visible to other
 machines on the network. No administrator privileges are required in this
 networking mode. The user-mode is also useful for doing a network boot on
 your VM Guest from a local directory on VM Host Server.

 The VM Guest allocates an IP address from a virtual DHCP server. VM Host Server
 (the DHCP server) is reachable at 10.0.2.2, while the IP address range for
 allocation starts from 10.0.2.15. You can use ssh to
 connect to VM Host Server at 10.0.2.2, and scp to copy files
 back and forth.

Command Line Examples

 This section shows several examples on how to set up user-mode networking
 with QEMU.

Example 28.1. Restricted User-mode Networking
tux > sudo qemu-system-x86_64 [...] \
-netdev user[image: 1],id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,vlan=1[image: 2],name=user_net1[image: 3],restrict=yes[image: 4]
	[image: 1]
	
 Specifies user-mode networking.

	[image: 2]
	
 Connects to VLAN number 1. If omitted, defaults to 0.

	[image: 3]
	
 Specifies a human-readable name of the network stack. Useful when
 identifying it in the QEMU monitor.

	[image: 4]
	
 Isolates VM Guest. It then cannot communicate with VM Host Server
 and no network packets will be routed to the external network.

Example 28.2. User-mode Networking with Custom IP Range
tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,net=10.2.0.0/8[image: 1],host=10.2.0.6[image: 2],\
dhcpstart=10.2.0.20[image: 3],hostname=tux_kvm_guest[image: 4]
	[image: 1]
	
 Specifies the IP address of the network that VM Guest sees and
 optionally the netmask. Default is 10.0.2.0/8.

	[image: 2]
	
 Specifies the VM Host Server IP address that VM Guest sees. Default is
 10.0.2.2.

	[image: 3]
	
 Specifies the first of the 16 IP addresses that the built-in DHCP
 server can assign to VM Guest. Default is 10.0.2.15.

	[image: 4]
	
 Specifies the host name that the built-in DHCP server will assign to
 VM Guest.

Example 28.3. User-mode Networking with Network-boot and TFTP
tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,tftp=/images/tftp_dir[image: 1],\
bootfile=/images/boot/pxelinux.0[image: 2]
	[image: 1]
	
 Activates a built-in TFTP (a file transfer protocol with the
 functionality of a very basic FTP) server. The files in the specified
 directory will be visible to a VM Guest as the root of a TFTP server.

	[image: 2]
	
 Broadcasts the specified file as a BOOTP (a network protocol that
 offers an IP address and a network location of a boot image, often used
 in diskless workstations) file. When used together with
 tftp, the VM Guest can boot from network from the
 local directory on the host.

Example 28.4. User-mode Networking with Host Port Forwarding
tux > sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,hostfwd=tcp::2222-:22

 Forwards incoming TCP connections to the port 2222 on the host to the
 port 22 (SSH) on VM Guest. If
 sshd is running on VM Guest,
 enter

tux > ssh qemu_host -p 2222

 where qemu_host is the host name or IP address of the
 host system, to get a SSH prompt
 from VM Guest.

Bridged Networking

 With the -netdev tap option, QEMU creates a network
 bridge by connecting the host TAP network device to a specified VLAN of
 VM Guest. Its network interface is then visible to the rest of the
 network. This method does not work by default and needs to be explicitly
 specified.

 First, create a network bridge and add a VM Host Server physical network
 interface (usually eth0) to it:

	
 Start YaST Control Center and select
 System+Network
 Settings.

	
 Click Add and select Bridge from
 the Device Type drop-down box in the
 Hardware Dialog window. Click Next.

	
 Choose whether you need a dynamically or statically assigned IP address,
 and fill the related network settings if applicable.

	
 In the Bridged Devices pane, select the Ethernet
 device to add to the bridge.

 Click Next. When asked about adapting an already
 configured device, click Continue.

	
 Click OK to apply the changes. Check if the bridge is
 created:

tux > bridge link
2: eth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 \
 state forwarding priority 32 cost 100

Connecting to a Bridge Manually

 Use the following example script to connect VM Guest to the newly created
 bridge interface br0. Several commands in the script
 are run via the sudo mechanism because they require
 root privileges.

Required Software

 To manage a network bridge, you need to have the
 tunctl package installed.

#!/bin/bash
bridge=br0[image: 1]
tap=$(sudo tunctl -u $(whoami) -b)[image: 2]
sudo ip link set $tap up[image: 3]
sleep 1s[image: 4]
sudo ip link add name $bridge type bridge
sudo ip link set $bridge up
sudo ip link set $tap master $bridge[image: 5]
qemu-system-x86_64 -machine accel=kvm -m 512 -hda /images/sles_base.raw \
 -netdev tap,id=hostnet0 \
 -device virtio-net-pci,netdev=hostnet0,vlan=0,macaddr=00:16:35:AF:94:4B,\
 ifname=$tap[image: 6],script=no[image: 7],downscript=no
sudo ip link set $tap nomaster[image: 8]
sudo ip link set $tap down[image: 9]
sudo tunctl -d $tap[image: 10]
	[image: 1]
	
 Name of the bridge device.

	[image: 2]
	
 Prepare a new TAP device and assign it to the user who runs the script.
 TAP devices are virtual network devices often used for virtualization
 and emulation setups.

	[image: 3]
	
 Bring up the newly created TAP network interface.

	[image: 4]
	
 Make a 1-second pause to make sure the new TAP network interface is
 really up.

	[image: 5]
	
 Add the new TAP device to the network bridge
 br0.

	[image: 6]
	
 The ifname= suboption specifies the name of the TAP
 network interface used for bridging.

	[image: 7]
	
 Before qemu-system-ARCH connects to a network bridge,
 it checks the script and
 downscript values. If it finds the specified scripts
 on the VM Host Server file system, it runs the script
 before it connects to the network bridge and
 downscript after it exits the network environment.
 You can use these scripts to set up and tear down the bridged interfaces.
 By default,
 /etc/qemu-ifup and
 /etc/qemu-ifdown are examined. If
 script=no and downscript=no are
 specified, the script execution is disabled and you need to take care of
 it manually.

	[image: 8]
	
 Deletes the TAP interface from a network bridge br0.

	[image: 9]
	
 Sets the state of the TAP device to down.

	[image: 10]
	
 Tear down the TAP device.

Connecting to a Bridge with qemu-bridge-helper

 Another way to connect VM Guest to a network through a network bridge is
 by means of the qemu-bridge-helper helper program. It
 configures the TAP interface for you, and attaches it to the specified
 bridge. The default helper executable is
 /usr/lib/qemu-bridge-helper. The helper executable is
 setuid root, which is only executable by the members of the virtualization
 group (kvm). Therefore the
 qemu-system-ARCH command itself does not need to be run
 under root privileges.

 The helper is automatically called when you specify a network bridge:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0 \
 -device virtio-net-pci,netdev=hostnet0

 You can specify your own custom helper script that will take care of the
 TAP device (de)configuration, with the
 helper=/path/to/your/helper option:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0,helper=/path/to/bridge-helper \
 -device virtio-net-pci,netdev=hostnet0
Tip

 To define access privileges to qemu-bridge-helper,
 inspect the /etc/qemu/bridge.conf file. For example
 the following directive

allow br0

 allows the qemu-system-ARCH command to connect its
 VM Guest to the network bridge br0.

Enabling Seamless and Synchronized Mouse Pointer Movement

 When you click within a VM Guest's console with the mouse, the pointer is
 captured by the console window and cannot be used outside the console
 unless it is explicitly released (by pressing Alt+Ctrl). To
 prevent the console from grabbing the key and to enable seamless pointer
 movement between host and guest instead, add a tablet to the VM Guest.

 Adding a tablet has the additional advantage of synchronizing the mouse
 pointer movement between VM Host Server and VM Guest when using a graphical
 environment on the guest. With no tablet configured on the guest, you
 will often see two pointers with one dragging behind the other.

	
 Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
 switch to the Details view with View+Details.

	
 Click Add Hardware and choose
 Input and then EvTouch USB Graphics
 Tablet in the pop-up window. Proceed with
 Finish.

	
 If the guest is running, you will
 be asked whether to enable the tablet after the next reboot. Confirm
 with Yes.

	
 When you start or restart the VM Guest, the tablet becomes available in
 the VM Guest.

General qemu-system-ARCH Options

 This section introduces general qemu-system-ARCH options
 and options related to the basic emulated hardware, such as the virtual
 machine's processor, memory, model type, or time processing methods.

	
 -name NAME_OF_GUEST

	
 Specifies the name of the running guest system. The name is displayed in
 the window caption and used for the VNC server.

	
 -boot OPTIONS

	
 Specifies the order in which the defined drives will be booted. Drives
 are represented by letters, where a and
 b stand for the floppy drives 1 and 2,
 c stands for the first hard disk, d
 stands for the first CD-ROM drive, and n to
 p stand for Ether-boot network adapters.

 For example, qemu-system-ARCH [...] -boot order=ndc
 first tries to boot from network, then from the first CD-ROM drive, and
 finally from the first hard disk.

	
 -pidfile FILENAME

	
 Stores the QEMU's process identification number (PID) in a file. This
 is useful if you run QEMU from a script.

	
 -nodefaults

	
 By default QEMU creates basic virtual devices even if you do not
 specify them on the command line. This option turns this feature off, and
 you must specify every single device manually, including graphical and
 network cards, parallel or serial ports, or virtual consoles. Even QEMU
 monitor is not attached by default.

	
 -daemonize

	“Daemonizes” the QEMU process after it is started. QEMU
 will detach from the standard input and standard output after it is ready
 to receive connections on any of its devices.

SeaBIOS BIOS Implementation

 SeaBIOS is the default BIOS used. You can boot USB devices, any drive
 (CD-ROM, Floppy, or a hard disk). It has USB mouse and keyboard support and
 supports multiple VGA cards. For more information about SeaBIOS, refer to
 the SeaBIOS
 Website.

Basic Virtual Hardware

Machine Type

 You can specifies the type of the emulated machine. Run
 qemu-system-ARCH -M help to view a list of supported
 machine types.

ISA-PC

 The machine type isapc: ISA-only-PC is unsupported.

CPU Model

 To specify the type of the processor (CPU) model, run
 qemu-system-ARCH -cpuMODEL.
 Use qemu-system-ARCH -cpu help to view a list of
 supported CPU models.

 CPU flags information can be found at
 CPUID
 Wikipedia.

Other Basics Options

 The following is a list of most commonly used options while launching
 qemu from command line. To see all options available
 refer to qemu-doc man page.

	
 -m MEGABYTES

	
 Specifies how many megabytes are used for the virtual RAM size.

	
 -balloon virtio

	
 Specifies a paravirtualized device to dynamically change the amount of
 virtual RAM memory assigned to VM Guest. The top limit is the amount
 of memory specified with -m.

	
 -smp NUMBER_OF_CPUS

	
 Specifies how many CPUs will be emulated. QEMU supports up to 255
 CPUs on the PC platform (up to 64 with KVM acceleration used). This
 option also takes other CPU-related parameters, such as number of
 sockets, number of cores per
 socket, or number of threads per core.

 The following is an example of a working
 qemu-system-ARCH command line:

tux > qemu-system-x86_64 -name "SLES 12 SP2" -M pc-i440fx-2.7 -m 512 \
-machine accel=kvm -cpu kvm64 -smp 2 -drive /images/sles.raw
Figure 28.1. QEMU Window with SLES 11 SP3 as VM Guest
[image: QEMU Window with SLES 11 SP3 as VM Guest]

	
 -no-acpi

	
 Disables ACPI support.

	
 -S

	
 QEMU starts with CPU stopped. To start CPU, enter
 c in QEMU monitor. For more information, see
 Chapter 29, Virtual Machine Administration Using QEMU Monitor.

Storing and Reading Configuration of Virtual Devices

	
 -readconfig CFG_FILE

	
 Instead of entering the devices configuration options on the command
 line each time you want to run VM Guest,
 qemu-system-ARCH can read it from a file that was
 either previously saved with -writeconfig or edited
 manually.

	
 -writeconfig CFG_FILE

	
 Dumps the current virtual machine's devices configuration to a text
 file. It can be consequently re-used with the
 -readconfig option.

tux > qemu-system-x86_64 -name "SLES 12 SP2" -machine accel=kvm -M pc-i440fx-2.7 -m 512 -cpu kvm64 \
-smp 2 /images/sles.raw -writeconfig /images/sles.cfg
(exited)
tux > cat /images/sles.cfg
qemu config file

[drive]
 index = "0"
 media = "disk"
 file = "/images/sles_base.raw"

 This way you can effectively manage the configuration of your virtual
 machines' devices in a well-arranged way.

Guest Real-Time Clock

	
 -rtc OPTIONS

	
 Specifies the way the RTC is handled inside a VM Guest. By default, the
 clock of the guest is derived from that of the host system. Therefore,
 it is recommended that the host system clock is synchronized with an
 accurate external clock (for example, via NTP service).

 If you need to isolate the VM Guest clock from the host one, specify
 clock=vm instead of the default
 clock=host.

 You can also specify the initial time of the VM Guest's clock with the
 base option:

tux > qemu-system-x86_64 [...] -rtc clock=vm,base=2010-12-03T01:02:00

 Instead of a time stamp, you can specify utc or
 localtime. The former instructs VM Guest to start at
 the current UTC value (Coordinated Universal Time, see
 http://en.wikipedia.org/wiki/UTC), while the latter
 applies the local time setting.

Sparse Image Files and Disk Space

 If the host’s physical disk reaches a state where it has no available
 space, a virtual machine using a virtual disk based on a sparse image
 file cannot write to its disk. Consequently, it reports I/O errors.

 If this situation
 occurs, you should free up available space on the physical disk, remount
 the virtual machine’s file system, and set the file system back to
 read-write.

 To check the actual disk requirements of a sparse image file, use the
 command du -h <image file>.

 To increase the available space of a sparse image file, first increase
 the file size and then the file system.

Back Up Before Resizing

 Touching the sizes of partitions or sparse files always bears the risk
 of data failure. Do not work without a backup.

 The resizing of the image file can be done online, while the VM Guest
 is running. Increase the size of a sparse image file with:

tux > sudo dd if=/dev/zero of=<image file> count=0 bs=1M seek=<new size in MB>

 For example, to increase the file
 /var/lib/xen/images/sles/disk0 to a size of 16GB,
 use the command:

tux > sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 count=0 bs=1M seek=16000
Increasing Non-Sparse Images

 It is also possible to increase the image files of devices that are not
 sparse files. However, you must know exactly where the previous image
 ends. Use the seek parameter to point to the end of the image file and
 use a command similar to the following:

tux > sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 seek=8000 bs=1M count=2000

 Be sure to use the right seek, else data loss may happen.

 If the VM Guest is running during the resize operation, also resize
 the loop device that provides the image file to the VM Guest. First
 detect the correct loop device with the command:

tux > sudo losetup -j /var/lib/xen/images/sles/disk0

 Then resize the loop device, for example /dev/loop0,
 with the following command:

tux > sudo losetup -c /dev/loop0

 Finally check the size of the block device inside the guest system with
 the command fdisk -l /dev/xvdb. The device name
 depends on the actually increased device.

 The resizing of the file system inside the sparse file involves tools that
 are depending on the actual file system.

Differences between the libvirt LXC Driver and LXC

openSUSE versions prior to Leap were shipping LXC,
 while openSUSE
 Leap comes with the libvirt LXC driver, sometimes named libvirt-lxc
 to avoid confusion. The containers are not managed or configured in the same
 way in these tools. Here is a non-exhaustive list of differences.

 The main difference is that domain configuration in libvirt is an XML file,
 while LXC configuration is a properties file. Most of the LXC properties
 can be mapped to the domain XML. The properties that cannot be migrated are:

	lxc.network.script.up: this script can be
 implemented using the /etc/libvirt/hooks/network
 libvirt hook, though the script will need to be adapted.

	lxc.network.ipv*: libvirt cannot set the container
 network configuration from the domain configuration.

	lxc.network.name: libvirt cannot set the container
 network card name.

	lxc.devttydir: libvirt does not allow changing the
 location of the console devices.

	lxc.console: there is currently no way to log the
 output of the console into a file on the host for libvirt LXC
 containers.

	lxc.pivotdir: libvirt does not allow to fine-tune
 the directory used for the pivot_root.
 /.olroot is used.

	lxc.rootfs.mount: libvirt does not allow to
 fine-tune this.

 LXC VLAN networks automatically create the VLAN interface on the
 host and then move it into the guest namespace. libvirt-lxc configuration
 can mention a VLAN tag ID only for Open vSwitch tap devices or PCI
 pass-through of SR-IOV VF. The conversion tool actually needs the user to
 manually create the VLAN interface on the host side.

 LXC rootfs can also be an image file, but LXC brute-forces the mount
 to try to detect the proper file system format. libvirt-lxc can mount
 image files of several formats, but the 'auto' value for the format
 parameter is explicitly not supported. This means that the generated
 configuration will need to be tweaked by the user to get a proper match
 in that case.

 LXC can support any cgroup configuration, even future ones, while
 libvirt domain configuration, needs to map each of them.

 LXC can mount block devices in the rootfs, but it cannot
 mount raw partition files: the file needs to be manually attached to a
 loop device. On the other hand libvirt-lxc can mount block devices, but
 also partition files of any format.

Managing Disk Images with qemu-img

 In the previous section (see
 Section “Basic Installation with qemu-system-ARCH”), we used the
 qemu-img command to create an image of a hard disk. You
 can, however, use qemu-img for general disk image
 manipulation. This section introduces qemu-img
 subcommands to help manage the disk images flexibly.

General Information on qemu-img Invocation

qemu-img uses subcommands (like
 zypper does) to do specific tasks. Each subcommand
 understands a different set of options. Some options are general and used
 by more of these subcommands, while some are unique to the related
 subcommand. See the qemu-img manual page (man 1
 qemu-img) for a list of all supported options.
 qemu-img uses the following general syntax:

tux > qemu-img subcommand [options]

 and supports the following subcommands:

	
 create

	
 Creates a new disk image on the file system.

	
 check

	
 Checks an existing disk image for errors.

	
 compare

	
 Check if two images have the same content.

	
 map

	
 Dumps the metadata of the image file name and its backing file chain.

	
 amend

	
 Amends the image format specific options for the image file name.

	
 convert

	
 Converts an existing disk image to a new one in a different format.

	
 info

	
 Displays information about the relevant disk image.

	
 snapshot

	
 Manages snapshots of existing disk images.

	
 commit

	
 Applies changes made to an existing disk image.

	
 rebase

	
 Creates a new base image based on an existing image.

	
 resize

	
 Increases or decreases the size of an existing image.

Creating, Converting and Checking Disk Images

 This section describes how to create disk images, check their condition,
 convert a disk image from one format to another, and get detailed
 information about a particular disk image.

qemu-img create

 Use qemu-img create to create a new disk image for your
 VM Guest operating system. The command uses the following syntax:

tux > qemu-img create -f fmt[image: 1] -o options[image: 2] fname[image: 3] size[image: 4]
	[image: 1]
	
 The format of the target image. Supported formats are
 raw, and qcow2.

	[image: 2]
	
 Some image formats support additional options to be passed on the
 command line. You can specify them here with the -o
 option. The raw image format supports only the
 size option, so it is possible to insert -o
 size=8G instead of adding the size option at the end of the
 command.

	[image: 3]
	
 Path to the target disk image to be created.

	[image: 4]
	
 Size of the target disk image (if not already specified with the
 -o size=<image_size> option. Optional suffixes
 for the image size are K (kilobyte),
 M (megabyte), G (gigabyte), or
 T (terabyte).

 To create a new disk image sles.raw in the directory
 /images growing up to a maximum size of 4 GB, run the
 following command:

tux > qemu-img create -f raw -o size=4G /images/sles.raw
Formatting '/images/sles.raw', fmt=raw size=4294967296

tux > ls -l /images/sles.raw
-rw-r--r-- 1 tux users 4294967296 Nov 15 15:56 /images/sles.raw

tux > qemu-img info /images/sles.raw
image: /images/sles11.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 0

 As you can see, the virtual size of the newly created
 image is 4 GB, but the actual reported disk size is 0 as no data has been
 written to the image yet.

VM Guest Images on the Btrfs File System

 If you need to create a disk image on the Btrfs file system, you can use
 nocow=on to reduce the performance overhead created by
 the copy-on-write feature of Btrfs:

tux > qemu-img create -o nocow=on test.img 8G

 If you, however, want to use copy-on-write (for example for creating
 snapshots or sharing them across virtual machines), then leave the
 command line without the nocow option.

qemu-img convert

 Use qemu-img convert to convert disk images to another
 format. To get a complete list of image formats supported by QEMU, run
 qemu-img-h and look at the last line
 of the output. The command uses the following syntax:

tux > qemu-img convert -c[image: 1] -f fmt[image: 2] -O out_fmt[image: 3] -o options[image: 4] fname[image: 5] out_fname[image: 6]
	[image: 1]
	
 Applies compression on the target disk image. Only
 qcow and qcow2 formats support
 compression.

	[image: 2]
	
 The format of the source disk image. It is usually autodetected and can
 therefore be omitted.

	[image: 3]
	
 The format of the target disk image.

	[image: 4]
	
 Specify additional options relevant for the target image format. Use
 -o ? to view the list of options supported by the
 target image format.

	[image: 5]
	
 Path to the source disk image to be converted.

	[image: 6]
	
 Path to the converted target disk image.

tux > qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk

tux > ls -l /images/
-rw-r--r-- 1 tux users 4294967296 16. lis 10.50 sles.raw
-rw-r--r-- 1 tux users 2574450688 16. lis 14.18 sles.vmdk

 To see a list of options relevant for the selected target image format,
 run the following command (replace vmdk with your image
 format):

tux > qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk -o ?
Supported options:
size Virtual disk size
backing_file File name of a base image
compat6 VMDK version 6 image
subformat VMDK flat extent format, can be one of {monolithicSparse \
 (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat}
scsi SCSI image

qemu-img check

 Use qemu-img check to check the existing disk image for
 errors. Not all disk image formats support this feature. The command uses
 the following syntax:

tux > qemu-img check -f fmt[image: 1] fname[image: 2]
	[image: 1]
	
 The format of the source disk image. It is usually autodetected and can
 therefore be omitted.

	[image: 2]
	
 Path to the source disk image to be checked.

 If no error is found, the command returns no output. Otherwise, the type
 and number of errors found is shown.

tux > qemu-img check -f qcow2 /images/sles.qcow2
ERROR: invalid cluster offset=0x2af0000
[...]
ERROR: invalid cluster offset=0x34ab0000
378 errors were found on the image.

Increasing the Size of an Existing Disk Image

 When creating a new image, you must specify its maximum size before the
 image is created (see
 Section “qemu-img create”). After you
 have installed the VM Guest and have been using it for some time, the
 initial size of the image may no longer be sufficient. In that case,
 add more space to it.

 To increase the size of an existing disk image by 2 gigabytes, use:

tux > qemu-img resize /images/sles.raw +2GB
Note

 You can resize the disk image using the formats raw,
 and qcow2. To resize an image in another format,
 convert it to a supported format with qemu-img convert
 first.

 The image now contains an empty space of 2 GB after the final partition.
 You can resize the existing partitions or add new ones.

Figure 27.1. New 2 GB Partition in Guest YaST Partitioner
[image: New 2 GB Partition in Guest YaST Partitioner]

Advanced Options for the qcow2 File Format

qcow2 is the main disk image format used by QEMU.
 Its size grows on demand, and the disk space is only allocated when it is
 actually needed by the virtual machine.

 A qcow2 formatted file is organized in units of constant size. These units
 are called clusters. Viewed from the guest side, the
 virtual disk is also divided into clusters of the same size. QEMU
 defaults to 64 kB clusters, but you can specify a different value
 when creating a new image:

tux > qemu-img create -f qcow2 -o cluster_size=128K virt_disk.qcow2 4G

 A qcow2 image contains a set of tables organized in two levels that are
 called the L1 and L2 tables. There is just one L1 table per disk image,
 while there can be many L2 tables depending on how big the image is.

 To read or write data to the virtual disk, QEMU needs to read its
 corresponding L2 table to find out the relevant data location. Because
 reading the table for each I/O operation consumes system resources, QEMU
 keeps a cache of L2 tables in memory to speed up disk access.

Choosing the Right Cache Size

 The cache size relates to the amount of allocated space. L2 cache can map
 the following amount of virtual disk:

disk_size = l2_cache_size * cluster_size / 8

 With the default 64 kB of cluster size, that is

disk_size = l2_cache_size * 8192

 Therefore, to have a cache that maps
 n gigabytes of disk space with the default cluster
 size, you need

l2_cache_size = disk_size_GB * 131072

 QEMU uses 1 MB (1048576 bytes) of L2 cache by default. Following
 the above formulas, 1 MB of L2 cache covers 8 GB (1048576 /
 131072) of virtual disk. This means that the performance is fine with the
 default L2 cache size if your virtual disk size is up to 8 GB. For
 larger disks, you can speed up the disk access by increasing the L2 cache
 size.

Configuring the Cache Size

 You can use the -drive option on the QEMU command line
 to specify the cache sizes. Alternatively when communicating via QMP, use
 the blockdev-add command. For more information on QMP,
 see Section “QMP - QEMU Machine Protocol”.

 The following options configure the cache size for the virtual guest:

	l2-cache-size
	
 The maximum size of the L2 table cache.

	refcount-cache-size
	
 The maximum size of the refcount block cache. For
 more information on refcount, see
 https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt.

	cache-size
	
 The maximum size of both caches combined.

 When specifying values for the options above, be aware of the following:

	
 The size of both the L2 and refcount block caches needs to be a
 multiple of the cluster size.

	
 If you only set one of the options, QEMU will automatically adjust
 the other options so that the L2 cache is 4 times bigger than the
 refcount cache.

 The refcount cache is used much less often than the L2 cache, therefore you
 can keep it relatively small:

root # qemu-system-ARCH [...] \
 -drive file=disk_image.qcow2,l2-cache-size=4194304,refcount-cache-size=262144

Reducing the Memory Usage

 The larger the cache, the more memory it consumes. There is a separate L2
 cache for each qcow2 file. When using a lot of big disk images, you will
 probably need a considerably large amount of memory. Memory consumption
 is even worse if you add backing files
 (Section “Manipulate Disk Images Effectively”) and snapshots
 (see Section “Managing Snapshots of Virtual Machines with qemu-img”) to the
 guest's setup chain.

 That is why QEMU introduced the cache-clean-interval
 setting. It defines an interval in seconds after which all cache entries
 that have not been accessed are removed from memory.

 The following example removes all unused cache entries every 10 minutes:

root # qemu-system-ARCH [...] -drive file=hd.qcow2,cache-clean-interval=600

 If this option is not set, the default value is 0 and it disables this
 feature.

Managing Snapshots of Virtual Machines with qemu-img

Virtual Machine snapshots are snapshots of the complete
 environment in which a VM Guest is running. The snapshot includes the
 state of the processor (CPU), memory (RAM), devices, and all writable
 disks.

 Snapshots are helpful when you need to save your virtual machine in a
 particular state. For example, after you configured network services on a
 virtualized server and want to quickly start the virtual machine in the
 same state you last saved it. Or you can create a snapshot after the
 virtual machine has been powered off to create a backup state before you
 try something experimental and possibly make VM Guest unstable. This
 section introduces the latter case, while the former is described in
 Chapter 29, Virtual Machine Administration Using QEMU Monitor.

 To use snapshots, your VM Guest must contain at least one writable hard
 disk image in qcow2 format. This device is usually the
 first virtual hard disk.

Virtual Machine snapshots are created with the
 savevm command in the interactive QEMU monitor. To
 make identifying a particular snapshot easier, you can assign it a
 tag. For more information on QEMU monitor, see
 Chapter 29, Virtual Machine Administration Using QEMU Monitor.

 Once your qcow2 disk image contains saved snapshots, you
 can inspect them with the qemu-img snapshot command.

Shut Down the VM Guest

 Do not create or delete virtual machine snapshots with the
 qemu-img snapshot command while the virtual machine is
 running. Otherwise, you may damage the disk image with the state of the
 virtual machine saved.

Listing Existing Snapshots

 Use qemu-img snapshot -lDISK_IMAGE to view a list of all existing
 snapshots saved in the disk_image image. You can get
 the list even while the VM Guest is running.

tux > qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID[image: 1] TAG[image: 2] VM SIZE[image: 3] DATE[image: 4] VM CLOCK[image: 5]
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965
	[image: 1]
	
 Unique identification number of the snapshot. Usually auto-incremented.

	[image: 2]
	
 Unique description string of the snapshot. It is meant as a
 human-readable version of the ID.

	[image: 3]
	
 The disk space occupied by the snapshot. Note that the more memory is
 consumed by running applications, the bigger the snapshot is.

	[image: 4]
	
 Time and date the snapshot was created.

	[image: 5]
	
 The current state of the virtual machine's clock.

Creating Snapshots of a Powered-Off Virtual Machine

 Use qemu-img snapshot -cSNAPSHOT_TITLEDISK_IMAGE to create a snapshot of the current
 state of a virtual machine that was previously powered off.

tux > qemu-img snapshot -c backup_snapshot /images/sles.qcow2
tux > qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID TAG VM SIZE DATE VM CLOCK
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965
5 backup_snapshot 0 2013-11-22 14:14:00 00:00:00.000

 If something breaks in your VM Guest and you need to restore the state of
 the saved snapshot (ID 5 in our example), power off your VM Guest and
 execute the following command:

tux > qemu-img snapshot -a 5 /images/sles.qcow2

 The next time you run the virtual machine with
 qemu-system-ARCH, it will be in the state of snapshot
 number 5.

Note

 The qemu-img snapshot -c command is not related to the
 savevm command of QEMU monitor (see
 Chapter 29, Virtual Machine Administration Using QEMU Monitor). For example, you cannot apply a
 snapshot with qemu-img snapshot -a on a snapshot
 created with savevm in QEMU's monitor.

Deleting Snapshots

 Use qemu-img snapshot -dSNAPSHOT_IDDISK_IMAGE to delete old or unneeded snapshots
 of a virtual machine. This saves some disk space inside the
 qcow2 disk image as the space occupied by the snapshot
 data is restored:

tux > qemu-img snapshot -d 2 /images/sles.qcow2

Manipulate Disk Images Effectively

 Imagine the following real-life situation: you are a server administrator
 who runs and manages several virtualized operating systems. One group of
 these systems is based on one specific distribution, while another group
 (or groups) is based on different versions of the distribution or even on a
 different (and maybe non-Unix) platform. To make the case even more
 complex, individual virtual guest systems based on the same distribution
 usually differ according to the department and deployment. A file server
 typically uses a different setup and services than a Web server does, while
 both may still be based on openSUSE.

 With QEMU it is possible to create “base” disk images. You
 can use them as template virtual machines. These base images will save you
 plenty of time because you will never need to install the same operating
 system more than once.

Base and Derived Images

 First, build a disk image as usual and install the target system on it.
 For more information, see Section “Basic Installation with qemu-system-ARCH”
 and Section “Creating, Converting and Checking Disk Images”. Then build a
 new image while using the first one as a base image. The base image is
 also called a backing file. After your new
 derived image is built, never boot the base image
 again, but boot the derived image instead. Several derived images may
 depend on one base image at the same time. Therefore, changing the base
 image can damage the dependencies. While using your derived image, QEMU
 writes changes to it and uses the base image only for reading.

 It is a good practice to create a base image from a freshly installed
 (and, if needed, registered) operating system with no patches applied and
 no additional applications installed or removed. Later on, you can create
 another base image with the latest patches applied and based on the
 original base image.

Creating Derived Images

Note

 While you can use the raw format for base images, you
 cannot use it for derived images because the raw
 format does not support the backing_file option. Use
 for example the qcow2 format for the derived images.

 For example, /images/sles_base.raw is the base image
 holding a freshly installed system.

tux > qemu-img info /images/sles_base.raw
image: /images/sles_base.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.4G

 The image's reserved size is 4 GB, the actual size is 2.4 GB, and its
 format is raw. Create an image derived from the
 /images/sles_base.raw base image with:

tux > qemu-img create -f qcow2 /images/sles_derived.qcow2 \
-o backing_file=/images/sles_base.raw
Formatting '/images/sles_derived.qcow2', fmt=qcow2 size=4294967296 \
backing_file='/images/sles_base.raw' encryption=off cluster_size=0

 Look at the derived image details:

tux > qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2
virtual size: 4.0G (4294967296 bytes)
disk size: 140K
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

 Although the reserved size of the derived image is the same as the size of
 the base image (4 GB), the actual size is 140 KB only. The reason is that
 only changes made to the system inside the derived image are saved. Run
 the derived virtual machine, register it, if needed, and apply the latest
 patches. Do any other changes in the system such as removing unneeded or
 installing new software packages. Then shut the VM Guest down and examine
 its details once more:

tux > qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2
virtual size: 4.0G (4294967296 bytes)
disk size: 1.1G
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

 The disk size value has grown to 1.1 GB, which is the
 disk space occupied by the changes on the file system compared to the base
 image.

Rebasing Derived Images

 After you have modified the derived image (applied patches, installed
 specific applications, changed environment settings, etc.), it reaches the
 desired state. At that point, you can merge the original base
 image and the derived image to create a new base image.

 Your original base image (/images/sles_base.raw)
 holds a freshly installed system. It can be a template for new modified
 base images, while the new one can contain the same system as the first
 one plus all security and update patches applied, for example. After you
 have created this new base image, you can use it as a template for more
 specialized derived images as well. The new base image becomes independent
 of the original one. The process of creating base images from derived ones
 is called rebasing:

tux > qemu-img convert /images/sles_derived.qcow2 \
-O raw /images/sles_base2.raw

 This command created the new base image
 /images/sles_base2.raw using the
 raw format.

tux > qemu-img info /images/sles_base2.raw
image: /images/sles11_base2.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.8G

 The new image is 0.4 gigabytes bigger than the original base image. It
 uses no backing file, and you can easily create new derived images based
 upon it. This lets you create a sophisticated hierarchy of virtual disk
 images for your organization, saving a lot of time and work.

Mounting an Image on a VM Host Server

 It can be useful to mount a virtual disk image under the host
 system. It is strongly recommended to read Chapter 16, libguestfs
 and use dedicated tools to access a virtual machine image. However, if you
 need to do this manually, follow this guide.

 Linux systems can mount an internal partition of a raw
 disk image using a loopback device. The first example procedure is more
 complex but more illustrative, while the second one is straightforward:

Procedure 27.1. Mounting Disk Image by Calculating Partition Offset
	
 Set a loop device on the disk image whose partition
 you want to mount.

tux > losetup /dev/loop0 /images/sles_base.raw

	
 Find the sector size and the starting
 sector number of the partition you want to mount.

tux > fdisk -lu /dev/loop0

Disk /dev/loop0: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors
Units = sectors of 1 * 512 = 512[image: 1] bytes
Disk identifier: 0x000ceca8

 Device Boot Start End Blocks Id System
/dev/loop0p1 63 1542239 771088+ 82 Linux swap
/dev/loop0p2 * 1542240[image: 2] 8385929 3421845 83 Linux
	[image: 1]
	
 The disk sector size.

	[image: 2]
	
 The starting sector of the partition.

	
 Calculate the partition start offset:

 sector_size * sector_start = 512 * 1542240 = 789626880

	
 Delete the loop and mount the partition inside the disk image with the
 calculated offset on a prepared directory.

tux > losetup -d /dev/loop0
tux > mount -o loop,offset=789626880 \
/images/sles_base.raw /mnt/sles/
tux > ls -l /mnt/sles/
total 112
drwxr-xr-x 2 root root 4096 Nov 16 10:02 bin
drwxr-xr-x 3 root root 4096 Nov 16 10:27 boot
drwxr-xr-x 5 root root 4096 Nov 16 09:11 dev
[...]
drwxrwxrwt 14 root root 4096 Nov 24 09:50 tmp
drwxr-xr-x 12 root root 4096 Nov 16 09:16 usr
drwxr-xr-x 15 root root 4096 Nov 16 09:22 var

	
 Copy one or more files onto the mounted partition and unmount it when
 finished.

tux > cp /etc/X11/xorg.conf /mnt/sles/root/tmp
tux > ls -l /mnt/sles/root/tmp
tux > umount /mnt/sles/

Do not Write to Images Currently in Use

 Never mount a partition of an image of a running virtual machine in a
 read-write mode. This could corrupt the partition and
 break the whole VM Guest.

Dumping Virtual Machine Memory

 To save the content of the virtual machine memory to a disk or console
 output, use the following commands:

	
 memsave
 ADDR
 SIZE
 FILENAME

	
 Saves virtual memory dump starting at ADDR
 of size SIZE to file
 FILENAME

	
 pmemsave
 ADDR
 SIZE
 FILENAME

	
 Saves physical memory dump starting at ADDR
 of size SIZE to file
 FILENAME-

	x /FMTADDR
	
 Makes a virtual memory dump starting at address
 ADDR and formatted according to the
 FMT string. The
 FMT string consists of three parameters
 COUNTFORMATSIZE:

 The COUNT parameter is the number of items
 to be dumped.

 The FORMAT can be x
 (hex), d (signed decimal), u
 (unsigned decimal), o (octal), c
 (char) or i (assembly instruction).

 The SIZE parameter can be
 b (8 bits), h (16 bits),
 w (32 bits) or g (64 bits). On
 x86, h or w can be specified
 with the i format to respectively select 16 or
 32-bit code instruction size.

	xp /FMTADDR
	
 Makes a physical memory dump starting at address
 ADDR and formatted according to the
 FMT string. The
 FMT string consists of three parameters
 COUNTFORMATSIZE:

 The COUNT parameter is the number of the
 items to be dumped.

 The FORMAT can be x
 (hex), d (signed decimal), u
 (unsigned decimal), o (octal), c
 (char) or i (asm instruction).

 The SIZE parameter can be
 b (8 bits), h (16 bits),
 w (32 bits) or g (64 bits). On
 x86, h or w can be specified
 with thei format to respectively select 16 or
 32-bit code instruction size.

Suspending and Resuming Virtual Machine Execution

 The following commands are available for suspending and resuming virtual
 machines:

	
 stop

	
 Suspends the execution of the virtual machine.

	
 cont

	
 Resumes the execution of the virtual machine.

	
 system_reset

	
 Resets the virtual machine. The effect is similar to the reset button
 on a physical machine. This may leave the file system in an unclean
 state.

	
 system_powerdown

	
 Sends an ACPI shutdown request to the
 machine. The effect is similar to the power button on a physical
 machine.

	q or quit
	
 Terminates QEMU immediately.

Monitoring

Monitoring with Virtual Machine Manager

 After starting Virtual Machine Manager and connecting to the VM Host Server, a CPU usage graph of
 all the running guests is displayed.

 It is also possible to get information about disk and network usage with
 this tool, however, you must first activate this in
 Preferences:

	
 Run virt-manager.

	
 Select Edit+Preferences.

	
 Change the tab from General to
 Polling.

	
 Activate the check boxes for the kind of activity you want to see:
 Poll Disk I/O, Poll Network I/O,
 and Poll Memory stats.

	
 If desired, also change the update interval using Update status
 every n seconds.

	
 Close the Preferences dialog.

	
 Activate the graphs that should be displayed under View+Graph.

 Afterward, the disk and network statistics are also displayed in the main
 window of the Virtual Machine Manager.

 More precise data is available from the VNC window. Open a VNC window as
 described in Section “Opening a Graphical Console”. Choose
 Details from the toolbar or the View
 menu. The statistics are displayed from the Performance
 entry of the left-hand tree menu.

Monitoring with virt-top

virt-top is a command line tool similar to the
 well-known process monitoring tool top.
 virt-top uses libvirt and therefore is capable of
 showing statistics for VM Guests running on different hypervisors. It is
 recommended to use virt-top instead of
 hypervisor-specific tools like xentop.

 By default virt-top shows statistics for all running
 VM Guests. Among the data that is displayed is the percentage of memory
 used (%MEM) and CPU (%CPU) and the
 uptime of the guest (TIME). The data is updated
 regularly (every three seconds by default). The following shows the output
 on a VM Host Server with seven VM Guests, four of them inactive:

virt-top 13:40:19 - x86_64 8/8CPU 1283MHz 16067MB 7.6% 0.5%
7 domains, 3 active, 3 running, 0 sleeping, 0 paused, 4 inactive D:0 O:0 X:0
CPU: 6.1% Mem: 3072 MB (3072 MB by guests)

 ID S RDRQ WRRQ RXBY TXBY %CPU %MEM TIME NAME
 7 R 123 1 18K 196 5.8 6.0 0:24.35 sled12_sp1
 6 R 1 0 18K 0 0.2 6.0 0:42.51 sles12_sp1
 5 R 0 0 18K 0 0.1 6.0 85:45.67 opensuse_leap
 - (Ubuntu_1410)
 - (debian_780)
 - (fedora_21)
 - (sles11sp3)

 By default the output is sorted by ID. Use the following key combinations
 to change the sort field:

	Shift+P: CPU
 usage

	Shift+M:
 Total memory allocated by the guest

	Shift+T: Time

	Shift+I: ID

 To use any other field for sorting, press Shift+F and select a
 field from the list. To toggle the sort order, use Shift+R.

virt-top also supports different views on the VM Guests
 data, which can be changed on-the-fly by pressing the following keys:

	0: default view
	1: show physical CPUs
	2: show network interfaces
	3: show virtual disks

virt-top supports more hot keys to change the view of
 the data and many command line switches that affect the behavior of the
 program. For more information, see man 1 virt-top.

Monitoring with kvm_stat

kvm_stat can be used to trace KVM performance events.
 It monitors /sys/kernel/debug/kvm, so it needs the
 debugfs to be mounted. On openSUSE Leap it should be mounted by default. In
 case it is not mounted, use the following command:

tux > sudo mount -t debugfs none /sys/kernel/debug
kvm_stat can be used in three different modes:

kvm_stat # update in 1 second intervals
kvm_stat -1 # 1 second snapshot
kvm_stat -l > kvmstats.log # update in 1 second intervals in log format
 # can be imported to a spreadsheet
Example 9.1. Typical Output of kvm_stat
kvm statistics

 efer_reload 0 0
 exits 11378946 218130
 fpu_reload 62144 152
 halt_exits 414866 100
 halt_wakeup 260358 50
 host_state_reload 539650 249
 hypercalls 0 0
 insn_emulation 6227331 173067
 insn_emulation_fail 0 0
 invlpg 227281 47
 io_exits 113148 18
 irq_exits 168474 127
 irq_injections 482804 123
 irq_window 51270 18
 largepages 0 0
 mmio_exits 6925 0
 mmu_cache_miss 71820 19
 mmu_flooded 35420 9
 mmu_pde_zapped 64763 20
 mmu_pte_updated 0 0
 mmu_pte_write 213782 29
 mmu_recycled 0 0
 mmu_shadow_zapped 128690 17
 mmu_unsync 46 -1
 nmi_injections 0 0
 nmi_window 0 0
 pf_fixed 1553821 857
 pf_guest 1018832 562
 remote_tlb_flush 174007 37
 request_irq 0 0
 signal_exits 0 0
 tlb_flush 394182 148

 See
 http://clalance.blogspot.com/2009/01/kvm-performance-tools.html
 for further information on how to interpret these values.

 Virtualization Guide

Contents
	About This Manual
		Available Documentation
	Feedback
	Documentation Conventions

	I. Introduction
		1. Virtualization Technology
		Overview
	Virtualization Capabilities
	Virtualization Benefits
	Virtualization Modes
	I/O Virtualization

	2. Introduction to Xen Virtualization
		Basic Components
	Xen Virtualization Architecture

	3. Introduction to KVM Virtualization
		Basic Components
	KVM Virtualization Architecture

	4. Introduction to Linux Containers
	5. Virtualization Tools
		Virtualization Console Tools
	Virtualization GUI Tools

	6. Installation of Virtualization Components
		Installing KVM
	Installing Xen
	Installing Containers
	Patterns
	Installing UEFI Support

	II. Managing Virtual Machines with libvirt
		7. Starting and Stopping libvirtd
	8. Guest Installation
		GUI-Based Guest Installation
	Installing from the Command Line with virt-install
	Advanced Guest Installation Scenarios
		Including Add-on Products in the Installation

	9. Basic VM Guest Management
		Listing VM Guests
		Listing VM Guests with Virtual Machine Manager
	Listing VM Guests with virsh

	Accessing the VM Guest via Console
		Opening a Graphical Console
	Opening a Serial Console

	Changing a VM Guest's State: Start, Stop, Pause
		Changing a VM Guest's State with Virtual Machine Manager
	Changing a VM Guest's State with virsh

	Saving and Restoring the State of a VM Guest
		Saving/Restoring with Virtual Machine Manager
	Saving and Restoring with virsh

	Creating and Managing Snapshots
		Terminology
	Creating and Managing Snapshots with Virtual Machine Manager
	Creating and Managing Snapshots with virsh

	Deleting a VM Guest
		Deleting a VM Guest with Virtual Machine Manager
	Deleting a VM Guest with virsh

	Migrating VM Guests
		Migration Requirements
	Migrating with Virtual Machine Manager
	Migrating with virsh
	Step-by-Step Example

	Monitoring
		Monitoring with Virtual Machine Manager
	Monitoring with virt-top
	Monitoring with kvm_stat

	10. Connecting and Authorizing
		Authentication
		libvirtd Authentication
	VNC Authentication

	Connecting to a VM Host Server
		“system” Access for Non-Privileged Users
	Managing Connections with Virtual Machine Manager

	Configuring Remote Connections
		Remote Tunnel over SSH (qemu+ssh or xen+ssh)
	Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls)

	11. Managing Storage
		Managing Storage with Virtual Machine Manager
		Adding a Storage Pool
	Managing Storage Pools

	Managing Storage with virsh
		Listing Pools and Volumes
	Starting, Stopping and Deleting Pools
	Adding Volumes to a Storage Pool
	Deleting Volumes from a Storage Pool
	Attaching Volumes to a VM Guest
	Detaching Volumes from a VM Guest

	Locking Disk Files and Block Devices with virtlockd
		Enable Locking
	Configure Locking

	Online Resizing of Guest Block Devices
	Sharing Directories between Host and Guests (File System Pass-Through)
	Using RADOS Block Devices with libvirt

	12. Managing Networks
		Virtual Networks
		Managing Virtual Networks with Virtual Machine Manager
	Managing Virtual Networks with virsh

	Bridged Networking
		Managing Network Bridges with YaST
	Managing Network Bridges from the Command Line
	Using VLAN Interfaces

	13. Configuring Virtual Machines
		Machine Setup
		Overview
	Performance
	Processor
	Memory
	Boot Options

	Storage
	Controllers
	Networking
	Enabling Seamless and Synchronized Mouse Pointer Movement
	Adding a CD/DVD-ROM Device with Virtual Machine Manager
	Adding a Floppy Device with Virtual Machine Manager
	Ejecting and Changing Floppy or CD/DVD-ROM Media with Virtual Machine Manager
	Changing the Machine Type with virsh
	Assigning a Host PCI Device to a VM Guest
		Adding a PCI Device with Virtual Machine Manager
	Adding a PCI Device with virsh

	Assigning a Host USB Device to a VM Guest
		Adding a USB Device with Virtual Machine Manager
	Adding a USB Device with virsh

	Adding SR-IOV Devices
		Requirements
	Loading and Configuring the SR-IOV Host Drivers
	Adding a VF Network Device to an Existing VM Guest
	Dynamic Allocation of VFs from a Pool

	Using Macvtap to Share VM Host Server Network Interfaces

	III. Hypervisor-Independent Features
		14. Disk Cache Modes
		Disk Interface Cache Modes
	Description of Cache Modes
	Data Integrity Implications of Cache Modes
	Performance Implications of Cache Modes
	Effect of Cache Modes on Live Migration

	15. VM Guest Clock Settings
		KVM: Using kvm_clock
		Other Timekeeping Methods

	Xen Virtual Machine Clock Settings

	16. libguestfs
		VM Guest Manipulation Overview
		VM Guest Manipulation Risk
	libguestfs Design

	Package Installation
	Guestfs Tools
		Modifying Virtual Machines
	Supported File Systems and Disk Images
	
 virt-rescue

	
 virt-resize

	Other virt-* Tools
	
 guestfish

	Converting a Physical Machine into a KVM Guest

	Troubleshooting
		Btrfs-related Problems
	Environment
	
 libguestfs-test-tool

	External References

	IV. Managing Virtual Machines with Xen
		17. Setting Up a Virtual Machine Host
		Best Practices and Suggestions
	Managing Dom0 Memory
		Setting Dom0 Memory Allocation

	Network Card in Fully Virtualized Guests
	Starting the Virtual Machine Host
	PCI Pass-Through
		Configuring the Hypervisor for PCI Pass-Through
	Assigning PCI Devices to VM Guest Systems
	VGA Pass-Through
	Troubleshooting
	For More Information

	USB Pass-Through
		Identify the USB Device
	Emulated USB Device
	Paravirtualized PVUSB

	18. Virtual Networking
		Network Devices for Guest Systems
	Host-Based Routing in Xen
	Creating a Masqueraded Network Setup
	Special Configurations
		Bandwidth Throttling in Virtual Networks
	Monitoring the Network Traffic

	19. Managing a Virtualization Environment
		XL—Xen Management Tool
		Guest Domain Configuration File

	Automatic Start of Guest Domains
	Event Actions
	Time Stamp Counter
	Saving Virtual Machines
	Restoring Virtual Machines
	Virtual Machine States

	20. Block Devices in Xen
		Mapping Physical Storage to Virtual Disks
	Mapping Network Storage to Virtual Disk
	File-Backed Virtual Disks and Loopback Devices
	Resizing Block Devices
	Scripts for Managing Advanced Storage Scenarios

	21. Virtualization: Configuration Options and Settings
		Virtual CD Readers
		Virtual CD Readers on Paravirtual Machines
	Virtual CD Readers on Fully Virtual Machines
	Adding Virtual CD Readers
	Removing Virtual CD Readers

	Remote Access Methods
	VNC Viewer
		Assigning VNC Viewer Port Numbers to Virtual Machines
	Using SDL instead of a VNC Viewer

	Virtual Keyboards
	Dedicating CPU Resources
		Dom0
	VM Guests

	HVM Features
		Specify Boot Device on Boot
	Changing CPUIDs for Guests
	Increasing the Number of PCI-IRQs

	22. Administrative Tasks
		The Boot Loader Program
	Sparse Image Files and Disk Space
	Migrating Xen VM Guest Systems
		Preparing Block Devices for Migrations
	Migrating VM Guest Systems

	Monitoring Xen
		Monitor Xen with xentop
	Additional Tools

	Providing Host Information for VM Guest Systems

	23. XenStore: Configuration Database Shared between Domains
		Introduction
	File System Interface
		XenStore Commands
	
 /vm

	
 /local/domain/<domid>

	24. Xen as a High-Availability Virtualization Host
		Xen HA with Remote Storage
	Xen HA with Local Storage
	Xen HA and Private Bridges

	V. Managing Virtual Machines with QEMU
		25. QEMU Overview
	26. Setting Up a KVM VM Host Server
		CPU Support for Virtualization
	Required Software
	KVM Host-Specific Features
		Using the Host Storage with virtio-scsi
	Accelerated Networking with vhost-net
	Scaling Network Performance with Multiqueue virtio-net
	VFIO: Secure Direct Access to Devices
	VirtFS: Sharing Directories between Host and Guests
	KSM: Sharing Memory Pages between Guests

	27. Guest Installation
		Basic Installation with qemu-system-ARCH
	Managing Disk Images with qemu-img
		General Information on qemu-img Invocation
	Creating, Converting and Checking Disk Images
	Managing Snapshots of Virtual Machines with qemu-img
	Manipulate Disk Images Effectively

	28. Running Virtual Machines with qemu-system-ARCH
		Basic qemu-system-ARCH Invocation
	General qemu-system-ARCH Options
		Basic Virtual Hardware
	Storing and Reading Configuration of Virtual Devices
	Guest Real-Time Clock

	Using Devices in QEMU
		Block Devices
	Graphic Devices and Display Options
	USB Devices
	Character Devices

	Networking in QEMU
		Defining a Network Interface Card
	User-Mode Networking
	Bridged Networking

	Viewing a VM Guest with VNC
		Secure VNC Connections

	29. Virtual Machine Administration Using QEMU Monitor
		Accessing Monitor Console
	Getting Information about the Guest System
	Changing VNC Password
	Managing Devices
	Controlling Keyboard and Mouse
	Changing Available Memory
	Dumping Virtual Machine Memory
	Managing Virtual Machine Snapshots
	Suspending and Resuming Virtual Machine Execution
	Live Migration
	QMP - QEMU Machine Protocol
		Access QMP via Standard Input/Output
	Access QMP via Telnet
	Access QMP via Unix Socket
	Access QMP via libvirt's virsh Command

	VI. Managing Virtual Machines with LXC
		30. Linux Containers
		Setting Up LXC Distribution Containers
	Setting Up LXC Application Containers
	Securing a Container Using AppArmor
	Differences between the libvirt LXC Driver and LXC
	Sharing Namespaces across Containers
	For More Information

	31. Migration from LXC to libvirt-lxc
		Host Migration
	Container Migration
	Starting the Container

	Glossary
	A. Appendix
		Generating x509 Client/Server Certificates

	B. XM, XL Toolstacks and Libvirt framework
		Xen Toolstacks
		Upgrading from xend/xm to xl/libxl
	XL design
	Checklist before Upgrade

	Import Xen Domain Configuration into libvirt
	Differences between the xm and xl Applications
		Notation Conventions
	New Global Options
	Unchanged Options
	Removed Options
	Changed Options
	New Options

	External links
	Saving a Xen Guest Configuration in an xm Compatible Format

	C. GNU Licenses
		GNU Free Documentation License

Chapter 4. Introduction to Linux Containers

Linux containers are a lightweight virtualization
 method to run multiple virtual units (“containers”)
 simultaneously on a single host.
 This is similar to the chroot environment.
 Containers are isolated with kernel Control Groups
 (cgroups) and kernel Namespaces.

 Containers provide virtualization at the operating system level where the
 kernel controls the isolated containers.
 This is unlike full virtualization solutions like Xen or KVM where the
 processor simulates a complete hardware environment
 and controls virtual machines.

 Conceptually, containers can be seen as an improved
 chroot technique. The difference is that a
 chroot environment separates only the file
 system, whereas containers go further and provide resource management
 and control via cgroups.

Benefits of Containers
	
 Isolating applications and operating systems through containers.

	
 Providing nearly native performance as container manages allocation of
 resources in real-time.

	
 Controlling network interfaces and applying resources inside containers
 through cgroups.

Limitations of Containers
	
 All containers run inside the host system's kernel and not with a
 different kernel.

	
 Only allows Linux “guest” operating systems.

	
 Security depends on the host system. Container is not secure. If you
 need a secure system, you can confine it using an AppArmor or SELinux
 profile.

Chapter 9. Basic VM Guest Management

 Most management tasks, such as starting or stopping a VM Guest, can either
 be done using the graphical application Virtual Machine Manager or on the command line using
 virsh. Connecting to the graphical console via VNC is only
 possible from a graphical user interface.

Managing VM Guests on a Remote VM Host Server

 If started on a VM Host Server, the libvirt tools Virtual Machine Manager,
 virsh, and virt-viewer can be used to
 manage VM Guests on the host. However, it is also possible to manage
 VM Guests on a remote VM Host Server. This requires configuring remote access for
 libvirt on the host. For instructions, see
 Chapter 10, Connecting and Authorizing.

 To connect to such a remote host with Virtual Machine Manager, you need to set up a connection
 as explained in Section “Managing Connections with Virtual Machine Manager”. If
 connecting to a remote host using virsh or
 virt-viewer, you need to specify a connection URI with
 the parameter -c (for example, virsh -c
 qemu+tls://saturn.example.com/system or virsh -c
 xen+ssh://). The form of connection URI depends on the connection
 type and the hypervisor—see
 Section “Connecting to a VM Host Server” for details.

 Examples in this chapter are all listed without a connection URI.

Listing VM Guests

 The VM Guest listing shows all VM Guests managed by libvirt on a
 VM Host Server.

Listing VM Guests with Virtual Machine Manager

 The main window of the Virtual Machine Manager lists all VM Guests for each VM Host Server it is
 connected to. Each VM Guest entry contains the machine's name, its status
 (Running, Paused, or
 Shutoff) displayed as an icon and literally, and a CPU
 usage bar.

Listing VM Guests with virsh

 Use the command virshlist to get a
 list of VM Guests:

	List all running guests

	tux > virsh list

	List all running and inactive guests
	tux > virsh list --all

 For more information and further options, see virsh help
 list or man 1 virsh.

Securing a Container Using AppArmor

 By default, containers are not secured using AppArmor or SELinux. There
 is no graphical user interface to change the security model for a libvirt
 domain, but virsh will help.

	
 Edit the container XML configuration using virsh:

tux > virsh -c lxc:/// edit MYCONTAINER

	
 Add the following to the XML configuration, save it and exit the
 editor.

<domain>
 ...
 <seclabel type="dynamic" model="apparmor"/>
 ...
</domain>

	
 With this configuration, an AppArmor profile for the container will be
 created in the /etc/apparmor.d/libvirt
 directory. The default profile only allows the minimum applications to
 run in the container. This can be changed by modifying the
 libvirt-CONTAINER-uuid
 file: this file is not overwritten by libvirt.

Virtualization Modes

 Guest operating systems are hosted on virtual machines in either full
 virtualization (FV) mode or paravirtual (PV) mode. Each virtualization
 mode has advantages and disadvantages.

	
 Full virtualization mode lets virtual machines run unmodified operating
 systems, such as Windows* Server 2003. It can use either Binary
 Translation or hardware-assisted virtualization
 technology, such as AMD* Virtualization or Intel* Virtualization
 Technology. Using hardware assistance allows for better performance on
 processors that support it.

	
 To be able to run under paravirtual mode, guest operating systems
 usually need to be modified for the virtualization environment. However,
 operating systems running in paravirtual mode have better performance
 than those running under full virtualization.

 Operating systems currently modified to run in paravirtual mode are
 called paravirtualized operating systems
 and include openSUSE Leap and NetWare® 6.5 SP8.

Chapter 18. Virtual Networking

 A VM Guest system needs some means to communicate either with other
 VM Guest systems or with a local network. The network interface to the
 VM Guest system is made of a split device driver, which means that any
 virtual Ethernet device has a corresponding network interface in
 Dom0. This interface is set up to access a virtual network that is
 run in Dom0. The bridged virtual network is fully integrated into the
 system configuration of openSUSE Leap and can be configured with
 YaST.

 When installing a Xen VM Host Server, a bridged network configuration
 will be proposed during normal network configuration. The user can choose
 to change the configuration during the installation and customize it to
 the local needs.

 If desired, Xen VM Host Server can be installed after performing a
 default Physical Server installation using the Install
 Hypervisor and Tools module in YaST. This module will
 prepare the system for hosting virtual machines, including invocation of
 the default bridge networking proposal.

 In case the necessary packages for a Xen VM Host Server are installed
 manually with rpm or
 zypper, the remaining system configuration needs to
 be done by the administrator manually or with YaST.

 The network scripts that are provided by Xen are not used by default
 in openSUSE Leap. They are only delivered for reference but disabled.
 The network configuration that is used in openSUSE Leap is done by
 means of the YaST system configuration similar to the configuration
 of network interfaces in openSUSE Leap.

 For more general information about managing network bridges, see Section “Bridged Networking”.

Network Devices for Guest Systems

 The Xen hypervisor can provide different types of network
 interfaces to the VM Guest systems. The preferred network device
 should be a paravirtualized network interface. This yields the highest
 transfer rates with the lowest system requirements. Up to eight network
 interfaces may be provided for each VM Guest.

 Systems that are not aware of paravirtualized hardware may not have this
 option. To connect systems to a network that can only run fully
 virtualized, several emulated network interfaces are available. The
 following emulations are at your disposal:

	
 Realtek 8139 (PCI). This is the default emulated network card.

	
 AMD PCnet32 (PCI)

	
 NE2000 (PCI)

	
 NE2000 (ISA)

	
 Intel e100 (PCI)

	
 Intel e1000 and its variants e1000-82540em, e1000-82544gc, e1000-82545em (PCI)

 All these network interfaces are software interfaces. Because every
 network interface must have a unique MAC address, an address range has
 been assigned to Xensource that can be used by these interfaces.

Virtual Network Interfaces and MAC Addresses

 The default configuration of MAC addresses in virtualized environments
 creates a random MAC address that looks like 00:16:3E:xx:xx:xx.
 Normally, the amount of available MAC addresses should be big enough to
 get only unique addresses. However, if you have a very big installation,
 or to make sure that no problems arise from random MAC
 address assignment, you can also manually assign these addresses.

 For debugging or system management purposes, it may be useful to know
 which virtual interface in Dom0 is connected to which Ethernet
 device in a running guest. This information may be read from the device
 naming in Dom0. All virtual devices follow the rule
 vif<domain
 number>.<interface_number>.

 For example, if you want to know the device name for the third interface
 (eth2) of the VM Guest with id 5, the device in Dom0 would be
 vif5.2. To obtain a list of all available interfaces,
 run the command ip a.

 The device naming does not contain any information about which bridge
 this interface is connected to. However, this information is available in
 Dom0. To get an overview about which interface is connected to which
 bridge, run the command bridge link. The output may
 look as follows:

tux > sudo bridge link
2: eth0 state DOWN : <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 master br0
3: eth1 state UP : <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 master br1

 In this example, there are three configured bridges:
 br0, br1 and
 br2. Currently, br0 and
 br1 each have a real Ethernet device added:
 eth0 and eth1, respectively.

Saving a Xen Guest Configuration in an xm Compatible Format

 Although xl is now the current toolkit for managing
 Xen guests (apart from the preferred libvirt), you may need to
 export the guest configuration to the previously used
 xm format. To do this, follow these steps:

	
 First export the guest configuration to a file:

tux > virsh dumpxml guest_id > guest_cfg.xml

	
 Then convert the configuration to the xm format:

tux > virsh domxml-to-native xen-xm guest_cfg.xml > guest_xm_cfg

Chapter 24. Xen as a High-Availability Virtualization Host

 Setting up two Xen hosts as a failover system has several advantages
 compared to a setup where every server runs on dedicated hardware.

	
 Failure of a single server does not cause major interruption of the
 service.

	
 A single big machine is normally way cheaper than multiple smaller
 machines.

	
 Adding new servers as needed is a trivial task.

	
 The usage of the server is improved, which has positive effects on
 the power consumption of the system.

 The setup of migration for Xen hosts is described in
 Section “Migrating Xen VM Guest Systems”. In the following, several
 typical scenarios are described.

Xen HA with Remote Storage

 Xen can directly provide several remote block devices to the
 respective Xen guest systems. These include iSCSI, NPIV, and NBD.
 All of these may be used to do live migrations. When a storage system is
 already in place, first try to use the same device type you already used
 in the network.

 If the storage system cannot be used directly but provides a possibility
 to offer the needed space over NFS, it is also possible to create image
 files on NFS. If the NFS file system is available on all Xen host
 systems, this method also allows live migrations of Xen guests.

 When setting up a new system, one of the main considerations is whether a
 dedicated storage area network should be implemented. The following
 possibilities are available:

Table 24.1. Xen Remote Storage
	

 Method

 	

 Complexity

 	

 Comments

	

 Ethernet

 	

 low

 	

 Note that all block device traffic goes over the same Ethernet
 interface as the network traffic. This may be limiting the
 performance of the guest.

	

 Ethernet dedicated to storage.

 	

 medium

 	

 Running the storage traffic over a dedicated Ethernet interface may
 eliminate a bottleneck on the server side. However, planning your
 own network with your own IP address range and possibly a VLAN
 dedicated to storage requires numerous considerations.

	

 NPIV

 	

 high

 	

 NPIV is a method to virtualize Fibre channel connections. This is
 available with adapters that support a data rate of at least 4
 Gbit/s and allows the setup of complex storage systems.

 Typically, a 1 Gbit/s Ethernet device can fully use a typical
 hard disk or storage system. When using very fast storage systems, such
 an Ethernet device will probably limit the speed of the system.

Changing a VM Guest's State: Start, Stop, Pause

 Starting, stopping or pausing a VM Guest can be done with either Virtual Machine Manager or
 virsh. You can also configure a VM Guest to be
 automatically started when booting the VM Host Server.

 When shutting down a VM Guest, you may either shut it down gracefully, or
 force the shutdown. The latter is equivalent to pulling the power plug on a
 physical host and is only recommended if there are no alternatives. Forcing
 a shutdown may cause file system corruption and loss of data on the
 VM Guest.

Graceful Shutdown

 To be able to perform a graceful shutdown, the VM Guest must be configured
 to support ACPI. If you have created the guest
 with the Virtual Machine Manager, ACPI should be available in the VM Guest.

 Depending on the guest operating system, availability of ACPI may not be
 sufficient to perform a graceful shutdown. It is strongly recommended to
 test shutting down and rebooting a guest before using it in production.
 openSUSE or SUSE Linux Enterprise Desktop, for example, can require PolKit authorization for
 shutdown and reboot. Make sure this policy is turned off on all VM Guests.

 If ACPI was enabled during a Windows XP/Windows Server 2003 guest
 installation, turning it on in the VM Guest configuration only is not
 sufficient. For more information, see:

	
 https://support.microsoft.com/en-us/kb/314088

	
 https://support.microsoft.com/en-us/kb/309283

 Regardless of the VM Guest's configuration, a graceful shutdown is always
 possible from within the guest operating system.

Changing a VM Guest's State with Virtual Machine Manager

 Changing a VM Guest's state can be done either from Virtual Machine Manager's main window,
 or from a VNC window.

Procedure 9.1. State Change from the Virtual Machine Manager Window
	
 Right-click a VM Guest entry.

	
 Choose Run, Pause, or one of the
 Shutdown options from the pop-up menu.

Procedure 9.2. State change from the VNC Window
	
 Open a VNC Window as described in
 Section “Opening a Graphical Console with Virtual Machine Manager”.

	
 Choose Run, Pause, or one of the
 Shut Down options either from the toolbar or from the
 Virtual Machine menu.

Automatically Starting a VM Guest

 You can automatically start a guest when the VM Host Server boots. This feature
 is not enabled by default and needs to be enabled for each VM Guest
 individually. There is no way to activate it globally.

	
 Double-click the VM Guest entry in Virtual Machine Manager to open its console.

	
 Choose View+Details to open the VM Guest
 configuration window.

	
 Choose Boot Options and check Start virtual
 machine on host boot up.

	
 Save the new configuration with Apply.

Changing a VM Guest's State with virsh

 In the following examples, the state of a VM Guest named
 “sles12” is changed.

	Start
	tux > virsh start sles12

	Pause
	tux > virsh suspend sles12

	Resume (a Suspended VM Guest)
	tux > virsh resume sles12

	Reboot
	tux > virsh reboot sles12

	Graceful shutdown
	tux > virsh shutdown sles12

	Force shutdown
	tux > virsh destroy sles12

	Turn on automatic start
	tux > virsh autostart sles12

	Turn off automatic start
	tux > virsh autostart --disable sles12

Virtual Machine States

 A virtual machine’s state can be displayed by viewing the results of
 the xl list command, which abbreviates the state using
 a single character.

	r - running - The virtual machine is currently
 running and consuming allocated resources.

	b - blocked - The virtual machine’s processor is
 not running and not able to run. It is either waiting for I/O or has
 stopped working.

	p - paused - The virtual machine is paused. It does
 not interact with the hypervisor but still maintains its allocated
 resources, such as memory.

	s - shutdown - The guest operating system is in the
 process of being shut down, rebooted, or suspended, and the virtual
 machine is being stopped.

	c - crashed - The virtual machine has crashed and is
 not running.

	d - dying - The virtual machine is in the process of
 shutting down or crashing.

Data Integrity Implications of Cache Modes

	writethrough, none, directsync
	
 These are the safest modes, and considered equally safe, given that
 the guest operating system is “modern and well behaved”,
 which means that it uses flushes as needed. If you have a suspect
 guest, use writethough, or
 directsync. Note that some file systems are not
 compatible with none or
 directsync, as they do not support O_DIRECT,
 which these cache modes rely on.

	writeback
	
 This mode informs the guest of the presence of a write cache, and
 relies on the guest to send flush commands as needed to maintain data
 integrity within its disk image. This is a common storage design which
 is completely accounted for within modern file systems. This mode exposes
 the guest to data loss in the unlikely case of a host failure,
 because there is a window of time between the time a
 write is reported as completed, and that write being committed to the
 storage device.

	unsafe
	
 This mode is similar to writeback caching except for
 the following: the guest flush
 commands are ignored, nullifying the data integrity control of these
 flush commands, and resulting in a higher risk of data loss because of
 host failure. The name “unsafe” should serve as a warning
 that there is a much higher potential for data loss because of a host
 failure than with the other modes. As the guest terminates,
 the cached data is flushed at that time.

Troubleshooting

Btrfs-related Problems

 When using the guestfs tools on an image with Btrfs root partition (the
 default with openSUSE Leap) the following error message may be displayed:

tux > virt-ls -a /path/to/sles12sp2.qcow2 /
virt-ls: multi-boot operating systems are not supported

If using guestfish '-i' option, remove this option and instead
use the commands 'run' followed by 'list-filesystems'.
You can then mount filesystems you want by hand using the
'mount' or 'mount-ro' command.

If using guestmount '-i', remove this option and choose the
filesystem(s) you want to see by manually adding '-m' option(s).
Use 'virt-filesystems' to see what filesystems are available.

If using other virt tools, multi-boot operating systems won't work
with these tools. Use the guestfish equivalent commands
(see the virt tool manual page).

 This is usually caused by the presence of snapshots in the guests. In this
 case guestfs does not know which snapshot to bootstrap. To force the
 use of a snapshot, use the -m parameter as follows:

tux > virt-ls -m /dev/sda2:/:subvol=@/.snapshots/2/snapshot -a /path/to/sles12sp2.qcow2 /

Environment

 When troubleshooting problems within a libguestfs appliance, the
 environment variable LIBGUESTFS_DEBUG=1 can be used
 to enable debug messages. To output each command/API call in a format
 that is similar to guestfish commands, use the environment variable
 LIBGUESTFS_TRACE=1.

 libguestfs-test-tool

libguestfs-test-tool is a test program that checks if
 basic libguestfs functionality is working. It will print a large amount
 of diagnostic messages and details of the guestfs environment, then
 create a test image and try to start it. If it runs to completion
 successfully, the following message should be seen near the end:

===== TEST FINISHED OK =====

Virtual Keyboards

 When a virtual machine is started, the host creates a virtual keyboard
 that matches the keymap entry according to the virtual
 machine's settings. If there is no keymap entry
 specified, the virtual machine's keyboard defaults to English (US).

 To view a virtual machine's current keymap entry,
 enter the following command on the Dom0:

tux > xl list -l VM_NAME | grep keymap

 To configure a virtual keyboard for a guest, use the following snippet:

vfb = ['keymap="de"']

 For a complete list of supported keyboard layouts, see the
 Keymaps section of the xl.cfg
 manual page man 5 xl.cfg.

Networking

 This section describes how to add and configure new network devices.

Procedure 13.3. Adding a New Network Device
	
 Click Add Hardware below the left panel, then select
 Network from the Add New Virtual
 Hardware window.

Figure 13.11. Add a New Controller
[image: Add a New Controller]

	
 From the Network source list, select the source for
 the network connection. The list includes VM Host Server's available physical
 network interfaces, network bridges, or network bonds. You can also
 assign the VM Guest to an already defined virtual network. See
 Chapter 12, Managing Networks for more information on setting
 up virtual networks with Virtual Machine Manager.

	
 Specify a MAC address for the network device. While
 Virtual Machine Manager pre-fills a random value for your convenience, it is recommended
 to supply a MAC address appropriate for your network environment to
 avoid network conflicts.

	
 Select a device model from the list. You can either leave the
 Hypervisor default, or specify one of
 e1000,
 rtl8139, or virtio models. Note
 that virtio uses paravirtualized drivers.

	
 Confirm your settings with Finish. A new network
 device appears in the left panel.

Managing Storage with virsh

 Managing storage from the command line is also possible by using
 virsh. However, creating storage pools is currently not
 supported by SUSE. Therefore, this section is restricted to documenting
 functions like starting, stopping and deleting pools and volume management.

 A list of all virsh subcommands for managing pools and
 volumes is available by running virsh help pool and
 virsh help volume, respectively.

Listing Pools and Volumes

 List all pools currently active by executing the following command. To also
 list inactive pools, add the option --all:

tux > virsh pool-list --details

 Details about a specific pool can be obtained with the
 pool-info subcommand:

tux > virsh pool-info POOL

 Volumes can only be listed per pool by default. To list all volumes from a
 pool, enter the following command.

tux > virsh vol-list --details POOL

 At the moment virsh offers no tools to show whether a
 volume is used by a guest or not. The following procedure describes a way
 to list volumes from all pools that are currently used by a VM Guest.

Procedure 11.1. Listing all Storage Volumes Currently Used on a VM Host Server
	
 Create an XSLT style sheet by saving the following content to a file, for
 example, ~/libvirt/guest_storage_list.xsl:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="text()"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="disk">
 <xsl:text> </xsl:text>
 <xsl:value-of select="(source/@file|source/@dev|source/@dir)[1]"/>
 <xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

	
 Run the following commands in a shell. It is assumed that the guest's XML
 definitions are all stored in the default location
 (/etc/libvirt/qemu). xsltproc is
 provided by the package
 libxslt.

SSHEET="$HOME/libvirt/guest_storage_list.xsl"
cd /etc/libvirt/qemu
for FILE in *.xml; do
 basename $FILE .xml
 xsltproc $SSHEET $FILE
done

Starting, Stopping and Deleting Pools

 Use the virsh pool subcommands to start, stop or delete
 a pool. Replace POOL with the pool's name or its
 UUID in the following examples:

	Stopping a Pool
	tux > virsh pool-destroy POOL
A Pool's State Does not Affect Attached Volumes

 Volumes from a pool attached to VM Guests are always available,
 regardless of the pool's state (Active (stopped) or
 Inactive (started)). The state of the pool solely
 affects the ability to attach volumes to a VM Guest via remote
 management.

	Deleting a Pool
	tux > virsh pool-delete POOL
Deleting Storage Pools

 See Deleting Storage Pools

	Starting a Pool
	tux > virsh pool-start POOL

	Enable Autostarting a Pool
	tux > virsh pool-autostart POOL

 Only pools that are marked to autostart will automatically be started if
 the VM Host Server reboots.

	Disable Autostarting a Pool
	tux > virsh pool-autostart POOL --disable

Adding Volumes to a Storage Pool

virsh offers two ways to add volumes to storage pools:
 either from an XML definition with vol-create and
 vol-create-from or via command line arguments with
 vol-create-as. The first two methods are currently not
 supported by SUSE, therefore this section focuses on the subcommand
 vol-create-as.

 To add a volume to an existing pool, enter the following command:

tux > virsh vol-create-as POOL[image: 1]NAME[image: 2] 12G --format[image: 3]raw|qcow2[image: 4] --allocation 4G[image: 5]
	[image: 1]
	
 Name of the pool to which the volume should be added

	[image: 2]
	
 Name of the volume

	[image: 3]
	
 Size of the image, in this example 12 gigabytes. Use the suffixes k, M,
 G, T for kilobyte, megabyte, gigabyte, and terabyte, respectively.

	[image: 4]
	
 Format of the volume. SUSE currently supports raw,
 and qcow2.

	[image: 5]
	
 Optional parameter. By default virsh creates a sparse
 image file that grows on demand. Specify the amount of space that should
 be allocated with this parameter (4 gigabytes in this example). Use the
 suffixes k, M, G, T for kilobyte, megabyte, gigabyte, and terabyte,
 respectively.

 When not specifying this parameter, a sparse image file with no
 allocation will be generated. To create a non-sparse volume, specify the
 whole image size with this parameter (would be 12G in
 this example).

Cloning Existing Volumes

 Another way to add volumes to a pool is to clone an existing volume. The
 new instance is always created in the same pool as the original.

tux > virsh vol-clone NAME_EXISTING_VOLUME[image: 1]NAME_NEW_VOLUME[image: 2] --pool POOL[image: 3]
	[image: 1]
	
 Name of the existing volume that should be cloned

	[image: 2]
	
 Name of the new volume

	[image: 3]
	
 Optional parameter. libvirt tries to locate the existing volume
 automatically. If that fails, specify this parameter.

Deleting Volumes from a Storage Pool

 To permanently delete a volume from a pool, use the subcommand
 vol-delete:

tux > virsh vol-delete NAME --pool POOL
--pool is optional. libvirt tries to locate the volume
 automatically. If that fails, specify this parameter.

No Checks Upon Volume Deletion

 A volume will be deleted in any case, regardless of whether it is
 currently used in an active or inactive VM Guest. There is no way to
 recover a deleted volume.

 Whether a volume is used by a VM Guest can only be detected by using by
 the method described in
 Procedure 11.1, “Listing all Storage Volumes Currently Used on a VM Host Server”.

Attaching Volumes to a VM Guest

 After you create a volume as described in
 Section “Adding Volumes to a Storage Pool”, you can
 attach it to a virtual machine and use it as a hard disk:

tux > virsh attach-disk DOMAINSOURCE_IMAGE_FILETARGET_DISK_DEVICE

 For example:

tux > virsh attach-disk sles12sp3 /virt/images/example_disk.qcow2 sda2

 To check if the new disk is attached, inspect the result of the
 virsh dumpxml command:

root # virsh dumpxml sles12sp3
[...]
<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/virt/images/example_disk.qcow2'/>
 <backingStore/>
 <target dev='sda2' bus='scsi'/>
 <alias name='scsi0-0-0'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
</disk>
[...]
Hotplug or Persistent Change

 You can attach disks to both active and inactive domains. The attachment
 is controlled by the --live and --config
 options:

	
 --live

	
 Hotplugs the disk to an active domain. The attachment is not saved in
 the domain configuration. Using --live on an inactive
 domain is an error.

	
 --config

	
 Changes the domain configuration persistently. The attached disk is
 then available after the next domain start.

	
 --live
 --config

	
 Hotplugs the disk and adds it to the persistent domain configuration.

 virsh attach-device

virsh attach-device is the more generic form of
 virsh attach-disk. You can use it to attach other
 types of devices to a domain.

Detaching Volumes from a VM Guest

 To detach a disk from a domain, use virsh detach-disk:

root # virsh detach-disk DOMAINTARGET_DISK_DEVICE

 For example:

root # virsh detach-disk sles12sp3 sda2

 You can control the attachment with the --live and
 --config options as described in
 Section “Attaching Volumes to a VM Guest”.

Chapter 13. Configuring Virtual Machines

Abstract

 Virtual Machine Manager's Details view offers in-depth information
 about the VM Guest's complete configuration and hardware equipment.
 Using this view, you can also change the guest configuration or add and
 modify virtual hardware. To access this view, open the guest's console
 in Virtual Machine Manager and either choose View+Details from the menu, or click
 Show virtual hardware details in the toolbar.

Figure 13.1. Details View of a VM Guest
[image: Details View of a VM Guest]

 The left panel of the window lists VM Guest overview and already
 installed hardware. After clicking an item in the list, you can access its
 detailed settings in the details view. You can change the hardware
 parameters to match your needs, then click Apply to
 confirm them. Some changes take effect immediately, while others need a
 reboot of the machine—and virt-manager
 warns you about that fact.

 To remove installed hardware from a VM Guest, select the appropriate list
 entry in the left panel and then click Remove in the
 bottom right of the window.

 To add new hardware, click Add Hardware below the left
 panel, then select the type of the hardware you want to add in the
 Add New Virtual Hardware window. Modify its parameters
 and confirm with Finish.

 The following sections describe configuration options for the specific
 hardware type being added. They do not focus on
 modifying an existing piece of hardware as the options are identical.

Machine Setup

 This section describes the setup of the virtualized processor and memory
 hardware. These components are vital to a VM Guest, therefore you cannot
 remove them. It also shows how to view the overview and performance
 information, and how to change boot parameters.

Overview

Overview shows basic details about VM Guest and the
 hypervisor.

Figure 13.2. Overview details
[image: Overview details]

Name, Title, and
 Description are editable and help you identify
 VM Guest in the Virtual Machine Manager list of
 machines.

Figure 13.3. VM Guest Title and Description
[image: VM Guest Title and Description]

UUID shows the universally unique identifier of the
 virtual machine, while Status shows its current
 status—Running, Paused, or
 Shutoff.

 The Hypervisor Details section shows the hypervisor
 type, CPU architecture, used emulator, and chipset type. None of the
 hypervisor parameters can be changed.

Performance

Performance shows regularly updated charts of CPU and
 memory usage, and disk and network I/O.

Figure 13.4. Performance
[image: Performance]

Enabling Disabled Charts

 Not all the charts in the Graph view are
 enabled by default. To enable these charts, go to
 File+View
 Manager, then select
 Edit+Preferences+Polling, and check the
 charts that you want to see regularly updated.

Figure 13.5. Statistics Charts
[image: Statistics Charts]

Processor

Processor includes detailed information about
 VM Guest processor configuration.

Figure 13.6. Processor View
[image: Processor View]

 In the CPUs section, you can configure several
 parameters related to the number of allocated CPUs.

	
 Logical host CPUs

	
 The real number of CPUs installed on VM Host Server.

	
 Current allocation

	
 The number of currently allocated CPUs. You can hotplug more CPUs by
 increasing this value up to the Maximum allocation
 value.

	
 Maximum allocation

	
 Maximum number of allocatable CPUs for the current session. Any change
 to this value will take effect after the next VM Guest reboot.

 The Configuration section lets you configure the CPU
 model and topology.

 When activated, the Copy host CPU configuration
 option uses the host CPU model for VM Guest. Otherwise you need to
 specify the CPU model from the drop-down box.

 After you activate Manually set CPU topology, you can
 specify a custom number of sockets, cores and threads for the CPU.

Memory

Memory contains information about the memory that is
 available to VM Guest.

Figure 13.7. Memory View
[image: Memory View]

	
 Total host memory

	
 Total amount of memory installed on VM Host Server.

	
 Current allocation

	
 The amount of memory currently available to VM Guest. You can
 hotplug more memory by increasing this value up to the value of
 Maximum allocation.

	
 Maximum allocation

	
 The maximum value to which you can hotplug the currently available
 memory. Any change to this value will take effect after the next
 VM Guest reboot.

Boot Options

Boot Options introduces options affecting the
 VM Guest boot process.

Figure 13.8. Boot Options
[image: Boot Options]

 In the Autostart section, you can specify whether the
 virtual machine should automatically start during the VM Host Server boot phase.

 In the Boot device order, activate the devices that
 will be used for booting VM Guest. You can change their order with the
 up and down arrow buttons on the right side of the list. To choose
 from a list of bootable devices on VM Guest start, activate
 Enable boot menu.

 To boot a different kernel than the one on the boot device, activate
 Enable direct kernel boot and specify the paths to the
 alternative kernel and initrd placed on the VM Host Server file system. You
 can also specify kernel arguments that will be passed to the loaded
 kernel.

External links

 For more information on Xen tool stacks refer to the following online
 resources:

	XL in Xen
	
 XL in
 Xen 4.2

	xl command
	XL
 command line.

	xl.cfg
	xl.cfg
 domain configuration file syntax.

	xl disk
	xl
 disk configuration option.

	XL vs Xend
	XL
 vs Xend feature comparison.

	BDF doc
	BDF
 documentation.

	libvirt
	virsh
 command.

Using Devices in QEMU

 QEMU virtual machines emulate all devices needed to run a VM Guest.
 QEMU supports, for example, several types of network cards, block devices
 (hard and removable drives), USB devices,
 character devices (serial and parallel
 ports), or multimedia devices (graphic and sound
 cards). This section introduces options to configure various types
 of supported devices.

Tip

 If your device, such as -drive, needs a special driver
 and driver properties to be set, specify them with the
 -device option, and identify with
 drive= suboption. For example:

tux > sudo qemu-system-x86_64 [...] -drive if=none,id=drive0,format=raw \
-device virtio-blk-pci,drive=drive0,scsi=off ...

 To get help on available drivers and their properties, use -device
 ? and -device
 DRIVER,?.

Block Devices

 Block devices are vital for virtual machines. In general, these are fixed
 or removable storage media usually called drives. One
 of the connected hard disks typically holds the guest operating system to
 be virtualized.

Virtual Machine drives are defined with
 -drive. This option has many sub-options, some of which
 are described in this section. For the complete list, see the manual page
 (man 1 qemu).

Sub-options for the -drive Option
	
 file=image_fname

	
 Specifies the path to the disk image that will be used with this drive.
 If not specified, an empty (removable) drive is assumed.

	
 if=drive_interface

	
 Specifies the type of interface to which the drive is connected.
 Currently only floppy, scsi,
 ide, or virtio are supported by
 SUSE. virtio defines a paravirtualized disk driver.
 Default is ide.

	
 index=index_of_connector

	
 Specifies the index number of a connector on the disk interface (see the
 if option) where the drive is connected. If not
 specified, the index is automatically incremented.

	
 media=type

	
 Specifies the type of media. Can be disk for hard
 disks, or cdrom for removable CD-ROM drives.

	
 format=img_fmt

	
 Specifies the format of the connected disk image. If not specified, the
 format is autodetected. Currently, SUSE supports
 raw, and qcow2 formats.

	
 cache=method

	
 Specifies the caching method for the drive. Possible values are
 unsafe, writethrough,
 writeback, directsync, or
 none. To improve performance when using the
 qcow2 image format, select
 writeback.
 none disables the host page cache and, therefore, is
 the safest option. Default for image files is
 writeback. For more information, see
 Chapter 14, Disk Cache Modes.

Tip

 To simplify defining block devices, QEMU understands several shortcuts
 which you may find handy when entering the
 qemu-system-ARCH command line.

 You can use

tux > sudo qemu-system-x86_64 -cdrom /images/cdrom.iso

 instead of

tux > sudo qemu-system-x86_64 -drive file=/images/cdrom.iso,index=2,media=cdrom

 and

tux > sudo qemu-system-x86_64 -hda /images/imagei1.raw -hdb /images/image2.raw -hdc \
/images/image3.raw -hdd /images/image4.raw

 instead of

tux > sudo qemu-system-x86_64 -drive file=/images/image1.raw,index=0,media=disk \
-drive file=/images/image2.raw,index=1,media=disk \
-drive file=/images/image3.raw,index=2,media=disk \
-drive file=/images/image4.raw,index=3,media=disk

Using Host Drives Instead of Images

 As an alternative to using disk images (see
 Section “Managing Disk Images with qemu-img”) you can also use existing
 VM Host Server disks, connect them as drives, and access them from VM Guest.
 Use the host disk device directly instead of disk image file names.

 To access the host CD-ROM drive, use

tux > sudo qemu-system-x86_64 [...] -drive file=/dev/cdrom,media=cdrom

 To access the host hard disk, use

tux > sudo qemu-system-x86_64 [...] -drive file=/dev/hdb,media=disk

 A host drive used by a VM Guest must not be accessed concurrently by the
 VM Host Server or another VM Guest.

Freeing Unused Guest Disk Space

 A Sparse image file is a type of disk image file
 that grows in size as the user adds data to it, taking up only as much
 disk space as is stored in it. For example, if you copy 1 GB of data
 inside the sparse disk image, its size grows by 1 GB. If you then delete
 for example 500 MB of the data, the image size does not by default
 decrease as expected.

 That is why the discard=on option is introduced on the
 KVM command line. It tells the hypervisor to automatically free the
 “holes” after deleting data from the sparse guest image. Note
 that this option is valid only for the if=scsi drive
 interface:

tux > sudo qemu-system-x86_64 [...] -drive file=/path/to/file.img,if=scsi,discard=on
Support Status
if=scsi is not supported. This interface does not map to
 virtio-scsi, but rather to the lsi SCSI
 adapter.

IOThreads

 IOThreads are dedicated event loop threads for virtio devices to perform
 I/O requests in order to improve scalability, especially on an SMP
 VM Host Server with SMP VM Guests using many disk devices. Instead of using
 QEMU's main event loop for I/O processing, IOThreads allow spreading
 I/O work across multiple CPUs and can improve latency when properly
 configured.

 IOThreads are enabled by defining IOThread objects. virtio devices can
 then use the objects for their I/0 event loops. Many virtio devices can
 use a single IOThread object, or virtio devices and IOThread objects
 can be configured in a 1:1 mapping. The following example creates a
 single IOThread with ID iothread0 which is then used
 as the event loop for two virtio-blk devices.

tux > qemu-system-x86_64 [...] -object iothread,id=iothread0\
-drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
iothread=iothread0 [...]

 The following qemu command line example illustrates a 1:1 virtio device
 to IOThread mapping:

tux > qemu-system-x86_64 [...] -object iothread,id=iothread0\
-object iothread,id=iothread1 -drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
 iothread=iothread1 [...]

Bio-Based I/O Path for virtio-blk

 For better performance of I/O-intensive applications, a new I/O path was
 introduced for the virtio-blk interface in kernel version 3.7. This
 bio-based block device driver skips the I/O scheduler, and thus shortens
 the I/O path in guest and has lower latency. It is especially useful for
 high-speed storage devices, such as SSD disks.

 The driver is disabled by default. To use it, do the following:

	
 Append virtio_blk.use_bio=1 to the kernel command
 line on the guest. You can do so via
 YaST+System+Boot
 Loader.

 You can do it also by editing /etc/default/grub,
 searching for the line that contains
 GRUB_CMDLINE_LINUX_DEFAULT=, and adding the kernel
 parameter at the end. Then run grub2-mkconfig
 >/boot/grub2/grub.cfg to update the grub2 boot menu.

	
 Reboot the guest with the new kernel command line active.

Bio-Based Driver on Slow Devices

 The bio-based virtio-blk driver does not help on slow devices such as
 spin hard disks. The reason is that the benefit of scheduling is larger
 than what the shortened bio path offers. Do not use the bio-based driver
 on slow devices.

Accessing iSCSI Resources Directly

 QEMU now integrates with libiscsi. This allows
 QEMU to access iSCSI resources directly and use them as virtual
 machine block devices.

 This feature does not require any host iSCSI initiator
 configuration, as is needed for a libvirt iSCSI target based storage
 pool setup. Instead it directly connects guest storage interfaces
 to an iSCSI target LUN by means of the user space library libiscsi.

 iSCSI-based disk devices can also be
 specified in the libvirt XML configuration.

RAW Image Format

 This feature is only available using the RAW image format, as the
 iSCSI protocol has some technical limitations.

 The following is the QEMU command line interface for iSCSI connectivity.

virt-manager Limitation

 The use of libiscsi based storage provisioning is not yet exposed by
 the virt-manager interface, but instead it would be configured by
 directly editing the guest xml. This new way of accessing iSCSI
 based storage is to be done at the command line.

tux > sudo qemu-system-x86_64 -machine accel=kvm \
 -drive file=iscsi://192.168.100.1:3260/iqn.2016-08.com.example:314605ab-a88e-49af-b4eb-664808a3443b/0,\
 format=raw,if=none,id=mydrive,cache=none \
 -device ide-hd,bus=ide.0,unit=0,drive=mydrive ...

Here is an example snippet of guest domain xml which uses the protocol
based iSCSI:

<devices>
...
 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/2'>
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='iscsi' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>
</devices>

 Contrast that with an example which uses the host based iSCSI
 initiator which virt-manager sets up:

<devices>
...
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source dev='/dev/disk/by-path/scsi-0:0:0:0'/>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01'
 function='0x1'/>
 </controller>
</devices>

Using RADOS Block Devices with QEMU

 RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting,
 replication, and data consistency. You can use an RBD from your
 KVM-managed VM Guests similarly to how you use other block devices.

Graphic Devices and Display Options

 This section describes QEMU options affecting the type of the emulated
 video card and the way VM Guest graphical output is displayed.

Defining Video Cards

 QEMU uses -vga to define a video card used to display
 VM Guest graphical output. The -vga option understands
 the following values:

	
 none

	
 Disables video cards on VM Guest (no video card is emulated). You can
 still access the running VM Guest via the serial console.

	
 std

	
 Emulates a standard VESA 2.0 VBE video card. Use it if you intend to
 use high display resolution on VM Guest.

	
 cirrus

	
 Emulates Cirrus Logic GD5446 video card. Good choice if you insist on
 high compatibility of the emulated video hardware. Most operating
 systems (even Windows 95) recognize this type of card.

Tip

 For best video performance with the cirrus type,
 use 16-bit color depth both on VM Guest and VM Host Server.

Display Options

 The following options affect the way VM Guest graphical output is
 displayed.

	
 -display gtk

	
 Display video output in a GTK window. This interface provides UI
 elements to configure and control the VM during runtime.

	
 -display sdl

	
 Display video output via SDL, usually in a separate graphics window.
 For more information, see the SDL documentation.

	
 -spice option[,option[,...]]

	
 Enables the spice remote desktop protocol.

	
 -display vnc

	
 Refer to Section “Viewing a VM Guest with VNC” for more information.

	
 -nographic

	
 Disables QEMU's graphical output. The emulated serial port is
 redirected to the console.

 After starting the virtual machine with -nographic,
 press
 Ctrl+AH in the virtual console to view the list of other
 useful shortcuts, for example, to toggle between the console and the
 QEMU monitor.

tux > qemu-system-x86_64 -hda /images/sles_base.raw -nographic

C-a h print this help
C-a x exit emulator
C-a s save disk data back to file (if -snapshot)
C-a t toggle console timestamps
C-a b send break (magic sysrq)
C-a c switch between console and monitor
C-a C-a sends C-a
(pressed C-a c)

QEMU 2.3.1 monitor - type 'help' for more information
(qemu)

	
 -no-frame

	
 Disables decorations for the QEMU window. Convenient for dedicated
 desktop work space.

	
 -full-screen

	
 Starts QEMU graphical output in full screen mode.

	
 -no-quit

	
 Disables the close button of the QEMU window and prevents it from
 being closed by force.

	-alt-grab, -ctrl-grab
	
 By default, the QEMU window releases the “captured” mouse
 after pressing
 Ctrl+Alt. You can change the key combination to either
 Ctrl+Alt+Shift
 (-alt-grab), or the right
 Ctrl key (-ctrl-grab).

USB Devices

 There are two ways to create USB devices usable by the VM Guest in KVM:
 you can either emulate new USB devices inside a VM Guest, or assign an
 existing host USB device to a VM Guest. To use USB devices in QEMU you
 first need to enable the generic USB driver with the -usb
 option. Then you can specify individual devices with the
 -usbdevice option.

Emulating USB Devices in VM Guest

 SUSE currently supports the following types of USB devices:
 disk, host,
 serial, braille,
 net, mouse, and
 tablet.

Types of USB devices for the -usbdevice option
	
 disk

	
 Emulates a mass storage device based on file. The optional
 format option is used rather than detecting the
 format.

tux > qemu-system-x86_64 [...] -usbdevice
 disk:format=raw:/virt/usb_disk.raw

	
 host

	
 Pass through the host device (identified by bus.addr).

	
 serial

	
 Serial converter to a host character device.

	
 braille

	
 Emulates a braille device using BrlAPI to display the braille output.

	
 net

	
 Emulates a network adapter that supports CDC Ethernet and RNDIS
 protocols.

	
 mouse

	
 Emulates a virtual USB mouse. This option overrides the default PS/2
 mouse emulation. The following example shows the hardware status of a
 mouse on VM Guest started with qemu-system-ARCH [...]
 -usbdevice mouse:

tux > sudo hwinfo --mouse
20: USB 00.0: 10503 USB Mouse
[Created at usb.122]
UDI: /org/freedesktop/Hal/devices/usb_device_627_1_1_if0
[...]
Hardware Class: mouse
Model: "Adomax QEMU USB Mouse"
Hotplug: USB
Vendor: usb 0x0627 "Adomax Technology Co., Ltd"
Device: usb 0x0001 "QEMU USB Mouse"
[...]

	
 tablet

	
 Emulates a pointer device that uses absolute coordinates (such as
 touchscreen). This option overrides the default PS/2 mouse emulation.
 The tablet device is useful if you are viewing VM Guest via the VNC
 protocol. See Section “Viewing a VM Guest with VNC” for more
 information.

Character Devices

 Use -chardev to create a new character device. The
 option uses the following general syntax:

qemu-system-x86_64 [...] -chardev BACKEND_TYPE,id=ID_STRING

 where BACKEND_TYPE can be one of
 null, socket, udp,
 msmouse, vc, file,
 pipe, console,
 serial, pty,
 stdio, braille,
 tty, or parport. All character
 devices must have a unique identification string up to 127 characters long.
 It is used to identify the device in other related directives. For the
 complete description of all back-end's sub-options, see the manual page
 (man 1 qemu). A brief description of the available
 back-ends follows:

	
 null

	
 Creates an empty device that outputs no data and drops any data it
 receives.

	
 stdio

	
 Connects to QEMU's process standard input and standard output.

	
 socket

	
 Creates a two-way stream socket. If PATH is
 specified, a Unix socket is created:

tux > sudo qemu-system-x86_64 [...] -chardev \
socket,id=unix_socket1,path=/tmp/unix_socket1,server

 The SERVER suboption specifies that the
 socket is a listening socket.

 If PORT is specified, a TCP socket is
 created:

tux > sudo qemu-system-x86_64 [...] -chardev \
socket,id=tcp_socket1,host=localhost,port=7777,server,nowait

 The command creates a local listening (server) TCP
 socket on port 7777. QEMU will not block waiting for a client to
 connect to the listening port (nowait).

	
 udp

	
 Sends all network traffic from VM Guest to a remote host over the UDP
 protocol.

tux > sudo qemu-system-x86_64 [...] \
-chardev udp,id=udp_fwd,host=mercury.example.com,port=7777

 The command binds port 7777 on the remote host mercury.example.com and sends
 VM Guest network traffic there.

	
 vc

	
 Creates a new QEMU text console. You can optionally specify the
 dimensions of the virtual console:

tux > sudo qemu-system-x86_64 [...] -chardev vc,id=vc1,width=640,height=480 \
-mon chardev=vc1

 The command creates a new virtual console called vc1
 of the specified size, and connects the QEMU monitor to it.

	
 file

	
 Logs all traffic from VM Guest to a file on VM Host Server. The
 path is required and will be created if it does not
 exist.

tux > sudo qemu-system-x86_64 [...] \
-chardev file,id=qemu_log1,path=/var/log/qemu/guest1.log

 By default QEMU creates a set of character devices for serial and
 parallel ports, and a special console for QEMU monitor. However, you can
 create your own character devices and use them for the mentioned
 purposes. The following options will help you:

	
 -serial CHAR_DEV

	
 Redirects the VM Guest's virtual serial port to a character device
 CHAR_DEV on VM Host Server. By default, it is a
 virtual console (vc) in graphical mode, and
 stdio in non-graphical mode. The
 -serial understands many sub-options. See the manual
 page man 1 qemu for a complete list of them.

 You can emulate up to 4 serial ports. Use -serial
 none to disable all serial ports.

	
 -parallel DEVICE

	
 Redirects the VM Guest's parallel port to a
 DEVICE. This option supports the same devices
 as -serial.

Tip

 With openSUSE
 Leap as a VM Host Server, you can directly use the hardware parallel
 port devices /dev/parportN where
 N is the number of the port.

 You can emulate up to 3 parallel ports. Use -parallel
 none to disable all parallel ports.

	
 -monitor CHAR_DEV

	
 Redirects the QEMU monitor to a character device
 CHAR_DEV on VM Host Server. This option supports
 the same devices as -serial. By default, it is a
 virtual console (vc) in a graphical mode, and
 stdio in non-graphical mode.

 For a complete list of available character devices back-ends, see the man
 page (man 1 qemu).

Appendix B. XM, XL Toolstacks and Libvirt framework

Xen Toolstacks

 Since the early Xen 2.x releases, xend has been
 the de facto toolstack for managing Xen installations. In Xen
 4.1, a new toolstack called libxenlight (also known as libxl) was
 introduced with technology preview status. libxl is a small, low-level
 library written in C. It has been designed to provide a simple API for
 all client toolstacks
 (XAPI,
 libvirt, xl). In Xen 4.2, libxl was promoted to officially
 supported status and xend was marked deprecated.
 xend has been included in the Xen 4.3 and 4.4
 series to give users ample time to convert their tooling to libxl. It
 has been removed from the upstream Xen project and will no longer be
 provided starting with the Xen 4.5 series and openSUSE Leap42.1.

 . Starting with openSUSE Leap42.1,
 xend is no longer supported.

 One of the major differences between xend and libxl is
 that the former is stateful, while the latter is stateless. With
 xend, all client applications such as
 xm and libvirt see the same system state.
 xend is responsible for maintaining state for the
 entire Xen host. In libxl, client applications such as
 xl or libvirt must maintain state. Thus domains
 created with xl or not visible or known to other libxl
 applications such as libvirt. Generally, it is discouraged to mix
 and match libxl applications and is preferred that a single libxl
 application be used to manage a Xen host. In openSUSE Leap, we
 recommend to use libvirt to manage Xen hosts. This allows
 management of the Xen system through libvirt applications such
 as virt-manager, virt-install,
 virt-viewer,
 libguestfs, etc. If xl is used to manage the Xen
 host, any virtual machines under its management will not be accessible
 to libvirt. Hence, they are not accessible to any of the libvirt
 applications.

Upgrading from xend/xm to xl/libxl

 The xl application, along with its configuration
 format (see man xl.cfg), was designed to be
 backward-compatible with the xm application and its
 configuration format (see man xm.cfg). Existing
 xm configuration should be usable with
 xl. Since libxl is stateless, and
 xl does not support the notion of managed domains,
 SUSE recommends using libvirt to manage Xen hosts.
 SUSE has provided a tool called xen2libvirt, which
 provides a simple mechanism to import domains previously managed by
 xend into libvirt. See
 Section “Import Xen Domain Configuration into libvirt” for more information on
 xen2libvirt.

XL design

 The basic structure of every xl command is:

 xl subcommand
 OPTIONS
 DOMAIN

DOMAIN is the numeric domain id, or the
 domain name (which will be internally translated to domain id), and
 OPTIONS are subcommand specific options.

 Although xl/libxl was designed to be backward-compatible with xm/xend,
 there are a few differences that should be noted:

	
 Managed or persistent domains. libvirt now provides this
 functionality.

	
 xl/libxl does not support Python code in the domain configuration
 files.

	
 xl/libxl does not support creating domains from SXP format
 configuration files (xmcreate
 -F).

	
 xl/libxl does not support sharing storage across DomU's via
 w! in domain configuration files.

 xl/libxl is relatively new and under heavy development, hence a few
 features are still missing with regard to the xm/xend toolstack:

	
 SCSI LUN/Host pass-through (PVSCSI)

	
 USB pass-through (PVUSB)

	
 Direct Kernel Boot for fully virtualized Linux guests for Xen

Checklist before Upgrade

 Before upgrading a Leap 42.1 Xen host to Leap
 15:

	
 You must remove any Python code from your xm domain configuration
 files.

	
 It is recommended to capture the libvirt domain XML from all existing
 virtual machines using virshdumpxmlDOMAIN_NAMEDOMAIN_NAME.xml.

	
 It is recommended to do a backup of
 /etc/xen/xend-config.sxp and
 /boot/grub/menu.lst files to keep references of
 previous parameters used for Xen.

Note

 Currently, live migrating virtual machines running on a Leap 42.1
 Xen host to a Leap 15 Xen host is not supported. The
 xend and libxl toolstacks are not
 runtime-compatible. Virtual machine downtime will be required to move
 the virtual machines.

Locking Disk Files and Block Devices with virtlockd

 Locking block devices and disk files prevents concurrent writes to these
 resources from different VM Guests. It provides protection against starting
 the same VM Guest twice, or adding the same disk to two different virtual
 machines. This will reduce the risk of a virtual machine's disk image
 becoming corrupted because of a wrong configuration.

 The locking is controlled by a daemon called
 virtlockd. Since it operates
 independently from the libvirtd daemon, locks will endure a crash or a
 restart of libvirtd. Locks will even persist in the case of an update of
 the virtlockd itself, since it can
 re-execute itself. This ensures that VM Guests do not
 need to be restarted upon a
 virtlockd update.
 virtlockd is supported for KVM,
 QEMU, and Xen.

Enable Locking

 Locking virtual disks is not enabled by default on openSUSE Leap. To enable
 and automatically start it upon rebooting, perform the following steps:

	
 Edit /etc/libvirt/qemu.conf and set

lock_manager = "lockd"

	
 Start the virtlockd daemon with
 the following command:

tux > sudo systemctl start virtlockd

	
 Restart the libvirtd daemon with:

tux > sudo systemctl restart libvirtd

	
 Make sure virtlockd is
 automatically started when booting the system:

tux > sudo systemctl enable virtlockd

Configure Locking

 By default virtlockd is configured
 to automatically lock all disks configured for your VM Guests. The default
 setting uses a "direct" lockspace, where the locks are acquired against the
 actual file paths associated with the VM Guest <disk> devices. For
 example, flock(2) will be called directly on
 /var/lib/libvirt/images/my-server/disk0.raw when the
 VM Guest contains the following <disk> device:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/my-server/disk0.raw'/>
 <target dev='vda' bus='virtio'/>
</disk>

 The virtlockd configuration can be
 changed by editing the file
 /etc/libvirt/qemu-lockd.conf. It also contains
 detailed comments with further information. Make sure to activate
 configuration changes by reloading
 virtlockd:

tux > sudo systemctl reload virtlockd
Enabling an Indirect Lockspace

 The default configuration of
 virtlockd uses a
 “direct” lockspace. This means that the locks are acquired
 against the actual file paths associated with the <disk> devices.

 If the disk file paths are not accessible to all hosts,
 virtlockd can be configured to
 allow an “indirect” lockspace. This means that a hash of the
 disk file path is used to create a file in the indirect lockspace
 directory. The locks are then held on these hash files instead of the
 actual disk file paths. Indirect lockspace is also useful if the file
 system containing the disk files does not support
 fcntl() locks. An indirect lockspace is specified with
 the file_lockspace_dir setting:

file_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

Enable Locking on LVM or iSCSI Volumes

 When wanting to lock virtual disks placed on LVM or iSCSI volumes shared
 by several hosts, locking needs to be done by UUID rather than by path
 (which is used by default). Furthermore, the lockspace directory needs to
 be placed on a shared file system accessible by all hosts sharing the
 volume. Set the following options for LVM and/or iSCSI:

lvm_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"
iscsi_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

Configuring Remote Connections

 A major benefit of libvirt is the ability to manage VM Guests on
 different remote hosts from a central location. This section gives
 detailed instructions on how to configure server and client to allow
 remote connections.

Remote Tunnel over SSH (qemu+ssh or xen+ssh)

 Enabling a remote connection that is tunneled over SSH on the
 VM Host Server only requires the ability to accept SSH connections. Make
 sure the SSH daemon is started (systemctl status
 sshd) and that the ports for service
 SSH are opened in the firewall.

 User authentication for SSH connections can be done using traditional
 file user/group ownership and permissions as described in
 Section “Access Control for Unix Sockets with Permissions and Group Ownership”.
 Connecting as user tux
 (qemu+ssh://tuxsIVname;/system or
 xen+ssh://tuxsIVname;/system) works out
 of the box and does not require additional configuration on the
 libvirt side.

 When connecting via SSH
 qemu+ssh://USER@SYSTEM
 or
 xen+ssh://USER@SYSTEM
 you need to provide the password for USER.
 This can be avoided by copying your public key to
 ~USER/.ssh/authorized_keys
 on the VM Host Server as explained in
 “Copying an SSH Key” (Section “SSH: Secure Network Operations”, ↑Security Guide). Using an ssh-agent on the
 machine from which you are connecting adds even more
 convenience. For more information, see
 “Using the ssh-agent” (Section “SSH: Secure Network Operations”, ↑Security Guide).

Remote TLS/SSL Connection with x509 Certificate (qemu+tls or xen+tls)

 Using TCP connections with TLS/SSL encryption and authentication via
 x509 certificates is much more complicated to set up than SSH, but it is
 a lot more scalable. Use this method if you need to manage several
 VM Host Servers with a varying number of administrators.

Basic Concept

 TLS (Transport Layer Security) encrypts the communication between two
 computers by using certificates. The computer starting the connection
 is always considered the “client”, using a “client
 certificate”, while the receiving computer is always considered
 the “server”, using a “server certificate”.
 This scenario applies, for example, if you manage your VM Host Servers
 from a central desktop.

 If connections are initiated from both computers, each needs to have a
 client and a server certificate. This is the case,
 for example, if you migrate a VM Guest from one host to another.

 Each x509 certificate has a matching private key file. Only the
 combination of certificate and private key file can identify
 itself correctly. To assure that a certificate was issued by
 the assumed owner, it is signed and issued by a central certificate
 called certificate authority (CA). Both the client and the server
 certificates must be issued by the same CA.

User Authentication

 Using a remote TLS/SSL connection only ensures that two computers are
 allowed to communicate in a certain direction. Restricting access to
 certain users can indirectly be achieved on the client side by
 restricting access to the certificates. For more information, see
 Section “Restricting Access (Security Considerations)”.

libvirt also supports user authentication on the server with
 SASL. For more information, see
 Section “Central User Authentication with SASL for TLS Sockets”.

Configuring the VM Host Server

 The VM Host Server is the machine receiving connections. Therefore, the
 server certificates need to be installed. The CA
 certificate needs to be installed, too. When the certificates are
 in place, TLS support can be turned on for libvirt.

	
 Create the server certificate and export it together with the CA
 certificate as described in Section “Generating x509 Client/Server Certificates”.

	
 Create the following directories on the VM Host Server:

tux > sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

 Install the certificates as follows:

tux > sudo /etc/pki/CA/cacert.pem
tux > sudo /etc/pki/libvirt/servercert.pem
tux > sudo /etc/pki/libvirt/private/serverkey.pem
Restrict Access to Certificates

 Make sure to restrict access to certificates as explained in
 Section “Restricting Access (Security Considerations)”.

	
 Enable TLS support by editing
 /etc/libvirt/libvirtd.conf and setting
 listen_tls = 1. Restart libvirtd:

tux > sudo systemctl restart libvirtd

	
 By default, libvirt uses the TCP port 16514 for accepting secure
 TLS connections. Open this port in the firewall.

Restarting libvirtd with TLS enabled

 If you enable TLS for libvirt, the server certificates need to be
 in place, otherwise restarting libvirtd will fail. You also need
 to restart libvirtd in case you change the certificates.

Configuring the Client and Testing the Setup

 The client is the machine initiating connections. Therefore the
 client certificates need to be installed. The CA
 certificate needs to be installed, too.

	
 Create the client certificate and export it together with the CA
 certificate as described in Section “Generating x509 Client/Server Certificates”.

	
 Create the following directories on the client:

tux > sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

 Install the certificates as follows:

tux > sudo /etc/pki/CA/cacert.pem
tux > sudo /etc/pki/libvirt/clientcert.pem
tux > sudo /etc/pki/libvirt/private/clientkey.pem
Restrict Access to Certificates

 Make sure to restrict access to certificates as explained in
 Section “Restricting Access (Security Considerations)”.

	
 Test the client/server setup by issuing the following command.
 Replace mercury.example.com with the name of
 your VM Host Server. Specify the same fully qualified host name as used
 when creating the server certificate.

#QEMU/KVM
virsh -c qemu+tls://mercury.example.com/system list --all

#Xen
virsh -c xen+tls://mercury.example.com/system list --all

 If your setup is correct, you will see a list of all VM Guests
 registered with libvirt on the VM Host Server.

Enabling VNC for TLS/SSL connections

 Currently, VNC communication over TLS is only supported by a few tools.
 Common VNC viewers such as tightvnc or
 tigervnc do not support TLS/SSL. The only supported
 alternative to Virtual Machine Manager and virt-viewer is
 remmina (refer to “Remmina: the Remote Desktop Client” (Section “Remote Access with VNC”, ↑Reference)).

VNC over TLS/SSL: VM Host Server Configuration

 To access the graphical console via VNC over TLS/SSL, you
 need to configure the VM Host Server as follows:

	
 Open ports for the service
 VNC in your firewall.

	
 Create a directory /etc/pki/libvirt-vnc and
 link the certificates into this directory as follows:

tux > sudo mkdir -p /etc/pki/libvirt-vnc && cd /etc/pki/libvirt-vnc
tux > sudo ln -s /etc/pki/CA/cacert.pem ca-cert.pem
tux > sudo ln -s /etc/pki/libvirt/servercert.pem server-cert.pem
tux > sudo ln -s /etc/pki/libvirt/private/serverkey.pem server-key.pem

	
 Edit /etc/libvirt/qemu.conf and set the
 following parameters:

vnc_listen = "0.0.0.0"
 vnc_tls = 1
 vnc_tls_x509_verify = 1

	
 Restart the libvirtd:

tux > sudo systemctl restart libvirtd
VM Guests Need to be Restarted

 The VNC TLS setting is only set when starting a VM Guest.
 Therefore, you need to restart all machines that have been running
 prior to making the configuration change.

VNC over TLS/SSL: Client Configuration

 The only action needed on the client side is to place the x509 client
 certificates in a location recognized by the client of choice.
 Unfortunately, Virtual Machine Manager and virt-viewer expect the
 certificates in a different location. Virtual Machine Manager can either read from a
 system-wide location applying to all users, or from a per-user location.
 Remmina (refer to “Remmina: the Remote Desktop Client” (Section “Remote Access with VNC”, ↑Reference)) asks for the location of
 certificates when initializing the connection to the remote VNC session.

	

 Virtual Machine Manager (virt-manager)

	
 To connect to the remote host, Virtual Machine Manager requires the setup explained in
 Section “Configuring the Client and Testing the Setup”. To be able
 to connect via VNC, the client certificates also need to be placed in
 the following locations:

	System-wide location
		
 /etc/pki/CA/cacert.pem

	
 /etc/pki/libvirt-vnc/clientcert.pem

	
 /etc/pki/libvirt-vnc/private/clientkey.pem

	Per-user location
		
 /etc/pki/CA/cacert.pem

	
 ~/.pki/libvirt-vnc/clientcert.pem

	
 ~/.pki/libvirt-vnc/private/clientkey.pem

	

 virt-viewer

	virt-viewer only accepts certificates from a
 system-wide location:

	
 /etc/pki/CA/cacert.pem

	
 /etc/pki/libvirt-vnc/clientcert.pem

	
 /etc/pki/libvirt-vnc/private/clientkey.pem

Restrict Access to Certificates

 Make sure to restrict access to certificates as explained in
 Section “Restricting Access (Security Considerations)”.

Restricting Access (Security Considerations)

 Each x509 certificate consists of two pieces: the public certificate
 and a private key. A client can only authenticate using both pieces.
 Therefore, any user that has read access to the client certificate and
 its private key can access your VM Host Server. On the other hand, an
 arbitrary machine equipped with the full server certificate can pretend
 to be the VM Host Server. Since this is probably not desirable, access to
 at least the private key files needs to be restricted as much as
 possible. The easiest way to control access to a key file is to use
 access permissions.

	
 Server Certificates

	
 Server certificates need to be readable for QEMU processes. On
 openSUSE Leap QEMU, processes started from libvirt tools
 are owned by root, so it is sufficient if the root can
 read the certificates:

tux > chmod 700 /etc/pki/libvirt/private/
tux > chmod 600 /etc/pki/libvirt/private/serverkey.pem

 If you change the ownership for QEMU processes in
 /etc/libvirt/qemu.conf, you also need to adjust
 the ownership of the key file.

	
 System Wide Client Certificates

	
 To control access to a key file that is available system-wide,
 restrict read access to a certain group, so that only members of
 that group can read the key file. In the following example, a group
 libvirt is created, and
 group ownership of the clientkey.pem file and
 its parent directory is set to
 libvirt. Afterward, the
 access permissions are restricted to owner and group. Finally the
 user tux is added to the group
 libvirt, and thus can
 access the key file.

CERTPATH="/etc/pki/libvirt/"
create group libvirt
groupadd libvirt
change ownership to user root and group libvirt
chown root.libvirt $CERTPATH/private $CERTPATH/clientkey.pem
restrict permissions
chmod 750 $CERTPATH/private
chmod 640 $CERTPATH/private/clientkey.pem
add user tux to group libvirt
usermod --append --groups libvirt tux

	
 Per-User Certificates

	
 User-specific client certificates for accessing the graphical
 console of a VM Guest via VNC need to be placed in the user's
 home directory in ~/.pki. Contrary to SSH, for
 example, the VNC viewer using these certificates do not check the
 access permissions of the private key file. Therefore, it is solely
 the user's responsibility to make sure the key file is not readable
 by others.

Restricting Access from the Server Side

 By default, every client that is equipped with appropriate client
 certificates may connect to a VM Host Server accepting TLS connections.
 Therefore, it is possible to use additional server-side authentication
 with SASL as described in
 Section “User name and Password Authentication with SASL”.

 It is also possible to restrict access with a whitelist of DNs
 (distinguished names), so only clients with a certificate matching a
 DN from the list can connect.

 Add a list of allowed DNs to tls_allowed_dn_list in
 /etc/libvirt/libvirtd.conf. This list may contain
 wild cards. Do not specify an empty list, since that would result in
 refusing all connections.

tls_allowed_dn_list = [
 "C=US,L=Provo,O=SUSE Linux Products GmbH,OU=*,CN=venus.example.com,EMAIL=*",
 "C=DE,L=Nuremberg,O=SUSE Linux Products GmbH,OU=Documentation,CN=*"]

 Get the distinguished name of a certificate with the following
 command:

tux > certtool -i --infile /etc/pki/libvirt/clientcert.pem | grep "Subject:"

 Restart libvirtd after having changed the configuration:

tux > sudo systemctl restart libvirtd

Central User Authentication with SASL for TLS Sockets

 A direct user authentication via TLS is not possible—this is
 handled indirectly on each client via the read permissions for the
 certificates as explained in
 Section “Restricting Access (Security Considerations)”. However, if
 a central, server-based user authentication is needed, libvirt
 also allows to use SASL (Simple Authentication and Security Layer) on
 top of TLS for direct user authentication. See
 Section “User name and Password Authentication with SASL” for
 configuration details.

Troubleshooting

Virtual Machine Manager/virsh Cannot Connect to Server

 Check the following in the given order:

	Is it a firewall issue (TCP port 16514 needs to be open on the
 server)?
	Is the client certificate (certificate and key) readable by the
 user that has started
 Virtual Machine Manager/virsh?

	Has the same full qualified host name as in the server
 certificate been specified with the connection?
	Is TLS enabled on the server (listen_tls =
 1)?
	Has libvirtd been
 restarted on the server?

VNC Connection fails

 Ensure that you can connect to the remote server using Virtual Machine Manager. If
 so, check whether the virtual machine on the server has been started
 with TLS support. The virtual machine's name in the following example
 is sles.

tux > ps ax | grep qemu | grep "\-name sles" | awk -F" -vnc " '{ print FS $2 }'

 If the output does not begin with a string similar to the following,
 the machine has not been started with TLS support and must be
 restarted.

 -vnc 0.0.0.0:0,tls,x509verify=/etc/pki/libvirt

 Virtualization Guide

 Copyright © 2006–
2018

 SUSE LLC and contributors. All rights reserved.

 Permission is granted to copy, distribute and/or modify this document under
 the terms of the GNU Free Documentation License, Version 1.2 or (at your
 option) version 1.3; with the Invariant Section being this copyright notice
 and license. A copy of the license version 1.2 is included in the section
 entitled “GNU Free Documentation License”.

 For SUSE trademarks, see
 http://www.suse.com/company/legal/. All other
 third-party trademarks are the property of their respective owners. Trademark
 symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates.
 Asterisks (*) denote third-party trademarks.

 All information found in this book has been compiled with utmost attention to
 detail. However, this does not guarantee complete accuracy. Neither SUSE LLC,
 its affiliates, the authors nor the translators shall be held liable for
 possible errors or the consequences thereof.

Abstract
 Describes virtualization technology in
 general, and introduces libvirt—the unified interface to
 virtualization—and detailed information on specific
 hypervisors.

