Manually Configuring NTP in the Network

chrony reads its configuration from the
 /etc/chrony.conf file. To keep the computer clock
 synchronized, you need to tell chrony what time servers to use. You can
 use specific server names or IP addresses, for example:

server 0.europe.pool.ntp.org
server 1.europe.pool.ntp.org
server 2.europe.pool.ntp.org

 You can also specify a pool name. Pool name resolves to
 several IP addresses:

pool pool.ntp.org
Computers on the Same Network

 To synchronize time on multiple computers on the same network, we do not
 recommend to synchronize all of them with an external server. A good
 practice is to make one computer the time server which is synchronized with
 an external time server, and the other computers act as its clients. Add a
 local directive to the server's
 /etc/chrony.conf to distinguish it from an
 authoritative time server:

local stratum 10

 To start chrony, run:

systemctl start chronyd.service

 After initializing chronyd, it takes some time before the time is
 stabilized and the drift file for correcting the local computer clock is
 created. With the drift file, the systematic error of the hardware clock can
 be computed when the computer is powered on. The correction is used
 immediately, resulting in a higher stability of the system time.

 To enable the service so that chrony starts automatically at boot time,
 run:

systemctl enable chronyd.service

Chapter 18. Time Synchronization with NTP

Abstract

 The NTP (network time protocol) mechanism is a protocol for synchronizing
 the system time over the network. First, a machine can obtain the time from
 a server that is a reliable time source. Second, a machine can itself act
 as a time source for other computers in the network. The goal is
 twofold—maintaining the absolute time and synchronizing the system
 time of all machines within a network.

 Maintaining an exact system time is important in many situations. The
 built-in hardware clock does often not meet the requirements of applications
 such as databases or clusters. Manual correction of the system time would
 lead to severe problems because, for example, a backward leap can cause
 malfunction of critical applications. Within a network, it is usually
 necessary to synchronize the system time of all machines, but manual time
 adjustment is a bad approach. NTP provides a mechanism to solve these
 problems. The NTP service continuously adjusts the system time with reliable
 time servers in the network. It further enables the management of local
 reference clocks, such as radio-controlled clocks.

 Since openSUSE Leap 15, chrony is the default implementation of NTP.
 chrony includes two parts; chronyd is a daemon that can be started at
 boot time and chronyc is a command line interface program to monitor the
 performance of chronyd, and to change various operating parameters at
 runtime.

 Starting with openSUSE Leap 15.2, the YaST module for NTP client
 configuration configures the systemd-timer instead of the cron daemon
 to execute chrony, when it is not configured to run as a daemon.

Note

 To enable time synchronization by means of active directory, follow the
 instructions found at Procedure “Joining an Active Directory Domain Using Windows Domain Membership”, ↑Security and Hardening Guide.

Configuring an NTP Client with YaST

 The NTP daemon (chronyd) coming with the chrony
 package is preset to use the local computer hardware clock as a time
 reference. The precision of a hardware clock heavily depends on its time
 source. For example, an atomic clock or GPS receiver is a very precise time
 source, while a common RTC chip is not a reliable time source. YaST
 simplifies the configuration of an NTP client.

 In the YaST NTP client configuration (Network
 Services+NTP Configuration)
 window, you can specify when to start the NTP daemon, the type of the
 configuration source, and add custom time servers.

Figure 18.1. NTP Configuration Window
[image: NTP Configuration Window]

NTP Daemon Start

 You can choose from three options for when to start the NTP daemon:

	
 Only Manually

	
 Select Only Manually, if you want to manually start
 the chrony daemon.

	
 Synchronize without Daemon

	
 Select Synchronize without Daemon to set the system
 time periodically without a permanently running chrony. You can set
 the Interval of the Synchronization in Minutes.

	
 Now and On Boot

	
 Select Now and On Boot to start chronyd
 automatically when the system is booted. This setting is recommended.

Type of the Configuration Source

 In the Configuration Source drop-down box, select
 either Dynamic or Static. Set
 Static if your server uses only a fixed set of (public)
 NTP servers, while Dynamic is better if your internal
 network offers NTP servers via DHCP.

Configure Time Servers

 Time servers for the client to query are listed in the lower part of the
 NTP Configuration window. Modify this list as needed
 with Add, Edit, and
 Delete.

 Click Add to add a new time server:

Figure 18.2. Adding a Time Server
[image: Adding a Time Server]

	
 In the Address field, type the URL of the time server
 or pool of time servers with which you want to synchronize the machine
 time. After the URL is complete, click Test to verify
 that it points to a valid time source.

	
 Activate Quick Initial Sync to speed up the time
 synchronization by sending more requests at the chronyd daemon start.

	
 Activate Start Offline to speed up the boot time on
 systems that start the chronyd daemon automatically and may not have an
 Internet connection at boot time. This option is useful for example for
 laptops whose network connection is managed by NetworkManager.

	
 Confirm with OK.

Advanced Configuration and Power Interface (ACPI)

 ACPI was designed to enable the operating system to set up and control the
 individual hardware components. ACPI supersedes both Power Management Plug
 and Play (PnP) and Advanced Power Management (APM). It delivers information
 about the battery, AC adapter, temperature, fan and system events, like
 “close lid” or “battery low.”

 The BIOS provides tables containing information about the individual
 components and hardware access methods. The operating system uses this
 information for tasks like assigning interrupts or activating and
 deactivating components. Because the operating system executes commands
 stored into the BIOS, the functionality depends on the BIOS implementation.
 The tables ACPI can detect and load are reported in journald. See
 Chapter 11, journalctl: Query the systemd Journal for more information on viewing the journal
 log messages. See Section “Troubleshooting” for more information
 about troubleshooting ACPI problems.

Controlling the CPU Performance

 The CPU can save energy in three ways:

	
 Frequency and Voltage Scaling

	
 Throttling the Clock Frequency (T-states)

	
 Putting the Processor to Sleep (C-states)

 Depending on the operating mode of the computer, these methods can be
 combined. Saving energy also means that the system heats up less and the
 fans are activated less frequently.

 Frequency scaling and throttling are only relevant if the processor is
 busy, because the most economic C-state is applied anyway when the
 processor is idle. If the CPU is busy, frequency scaling is the recommended
 power saving method. Often the processor only works with a partial load. In
 this case, it can be run with a lower frequency. Usually, dynamic frequency
 scaling controlled by the kernel on-demand governor is the best approach.

 Throttling should be used as the last resort, for example, to extend the
 battery operation time despite a high system load. However, some systems do
 not run smoothly when they are throttled too much. Moreover, CPU throttling
 does not make sense if the CPU has little to do.

 For in-depth information, refer to “Power Management” (↑System Analysis and Tuning Guide).

Troubleshooting

 There are two different types of problems. On one hand, the ACPI code of
 the kernel may contain bugs that were not detected in time. In this case, a
 solution will be made available for download. More often, the problems are
 caused by the BIOS. Sometimes, deviations from the ACPI specification are
 purposely integrated in the BIOS to circumvent errors in the ACPI
 implementation of other widespread operating systems. Hardware components
 that have serious errors in the ACPI implementation are recorded in a
 blacklist that prevents the Linux kernel from using ACPI for these
 components.

 The first thing to do when problems are encountered is to update the BIOS.
 If the computer does not boot, one of the following boot parameters may be
 helpful:

	pci=noacpi
	
 Do not use ACPI for configuring the PCI devices.

	acpi=ht
	
 Only perform a simple resource configuration. Do not use ACPI for other
 purposes.

	acpi=off
	
 Disable ACPI.

Problems Booting without ACPI

 Some newer machines (especially SMP systems and AMD64 systems) need ACPI
 for configuring the hardware correctly. On these machines, disabling ACPI
 can cause problems.

 Sometimes, the machine is confused by hardware that is attached over USB or
 FireWire. If a machine refuses to boot, unplug all unneeded hardware and
 try again.

 Monitor the boot messages of the system with the command dmesg
 -T| grep -2i acpi (or all messages, because the
 problem may not be caused by ACPI) after booting. If an error occurs while
 parsing an ACPI table, the most important table—the DSDT
 (Differentiated System Description Table)—can be
 replaced with an improved version. In this case, the faulty DSDT of the
 BIOS is ignored. The procedure is described in
 Section “Troubleshooting”.

 In the kernel configuration, there is a switch for activating ACPI debug
 messages. If a kernel with ACPI debugging is compiled and installed,
 detailed information is issued.

 If you experience BIOS or hardware problems, it is always advisable to
 contact the manufacturers. Especially if they do not always provide
 assistance for Linux, they should be confronted with the problems.
 Manufacturers will only take the issue seriously if they realize that an
 adequate number of their customers use Linux.

For More Information

	http://tldp.org/HOWTO/ACPI-HOWTO/ (detailed ACPI
 HOWTO, contains DSDT patches)

	http://www.acpi.info (Advanced Configuration &
 Power Interface Specification)

	http://acpi.sourceforge.net/dsdt/index.php (DSDT
 patches by Bruno Ducrot)

Chapter 28. Using NetworkManager

 NetworkManager is the ideal solution for laptops and other portable computers. It
 supports state-of-the-art encryption types and standards for network
 connections, including connections to 802.1X protected networks. 802.1X is
 the “IEEE Standard for Local and Metropolitan Area
 Networks—Port-Based Network Access Control”. With NetworkManager, you need
 not worry about configuring network interfaces and switching between wired or
 wireless networks when you are on the move. NetworkManager can automatically connect to
 known wireless networks or manage several network connections in
 parallel—the fastest connection is then used as default. Furthermore,
 you can manually switch between available networks and manage your network
 connection using an applet in the system tray.

 Instead of only one connection being active, multiple connections may be
 active at once. This enables you to unplug your laptop from an Ethernet and
 remain connected via a wireless connection.

Use Cases for NetworkManager

 NetworkManager provides a sophisticated and intuitive user interface, which enables
 users to easily switch their network environment. However, NetworkManager is not a
 suitable solution in the following cases:

	
 Your computer provides network services for other computers in your
 network, for example, it is a DHCP or DNS server.

	
 Your computer is a Xen server or your system is a virtual system inside
 Xen.

Setting Up Bonding Devices

 For some systems, there is a desire to implement network connections that
 comply to more than the standard data security or availability requirements
 of a typical Ethernet device. In these cases, several Ethernet devices can be
 aggregated to a single bonding device.

 The configuration of the bonding device is done by means of bonding module
 options. The behavior is mainly affected by the mode of the bonding device.
 By default, this is active-backup which means
 that a different slave device will become active if the active slave fails.
 The following bonding modes are available:

	0 (balance-rr)
	
 Packets are transmitted in round-robin fashion from the first to the last
 available interface. Provides fault tolerance and load balancing.

	1 (active-backup)
	
 Only one network interface is active. If it fails, a different interface
 becomes active. This setting is the default for openSUSE Leap. Provides
 fault tolerance.

	2 (balance-xor)
	
 Traffic is split between all available interfaces based on the following
 policy: [(source MAC address XOR'd with destination MAC address
 XOR packet type ID) modulo slave count] Requires support from
 the switch. Provides fault tolerance and load balancing.

	3 (broadcast)
	
 All traffic is broadcast on all interfaces. Requires support from the
 switch. Provides fault tolerance.

	4 (802.3ad)
	
 Aggregates interfaces into groups that share the same speed and duplex
 settings. Requires ethtool support in the interface
 drivers, and a switch that supports and is configured for IEEE 802.3ad
 Dynamic link aggregation. Provides fault tolerance and load balancing.

	5 (balance-tlb)
	
 Adaptive transmit load balancing. Requires ethtool
 support in the interface drivers but not switch support. Provides fault
 tolerance and load balancing.

	6 (balance-alb)
	
 Adaptive load balancing. Requires ethtool support in
 the interface drivers but not switch support. Provides fault tolerance and
 load balancing.

 For a more detailed description of the modes, see
 https://www.kernel.org/doc/Documentation/networking/bonding.txt.

Bonding and Xen

 Using bonding devices is only of interest for machines where you have
 multiple real network cards available. In most configurations, this means
 that you should use the bonding configuration only in Dom0. Only if you
 have multiple network cards assigned to a VM Guest system it may also be
 useful to set up the bond in a VM Guest.

 To configure a bonding device, use the following procedure:

	
 Run YaST+System+Network Settings.

	
 Use Add and change the Device Type to
 Bond. Proceed with Next.

[image: Bonding and Xen]

	
 Select how to assign the IP address to the bonding device. Three methods
 are at your disposal:

	
 No IP Address

	
 Dynamic Address (with DHCP or Zeroconf)

	
 Statically assigned IP Address

 Use the method that is appropriate for your environment.

	
 In the Bond Slaves tab, select the Ethernet devices that
 should be included into the bond by activating the related check box.

	
 Edit the Bond Driver Options and choose a bonding mode.

	
 Make sure that the parameter miimon=100 is added to the
 Bond Driver Options. Without this parameter, the data
 integrity is not checked regularly.

	
 Click Next and leave YaST with OK
 to create the device.

Hotplugging of Bonding Slaves

 In specific network environments (such as High Availability), there are
 cases when you need to replace a bonding slave interface with another one.
 The reason may be a constantly failing network device. The solution is to
 set up hotplugging of bonding slaves.

 The bond is configured as usual (according to man 5
 ifcfg-bonding), for example:

ifcfg-bond0
 STARTMODE='auto' # or 'onboot'
 BOOTPROTO='static'
 IPADDR='192.168.0.1/24'
 BONDING_MASTER='yes'
 BONDING_SLAVE_0='eth0'
 BONDING_SLAVE_1='eth1'
 BONDING_MODULE_OPTS='mode=active-backup miimon=100'

 The slaves are specified with STARTMODE=hotplug and
 BOOTPROTO=none:

ifcfg-eth0
 STARTMODE='hotplug'
 BOOTPROTO='none'

ifcfg-eth1
 STARTMODE='hotplug'
 BOOTPROTO='none'
BOOTPROTO=none uses the ethtool
 options (when provided), but does not set the link up on ifup
 eth0. The reason is that the slave interface is controlled by the
 bond master.

STARTMODE=hotplug causes the slave interface to join the
 bond automatically when it is available.

 The udev rules in
 /etc/udev/rules.d/70-persistent-net.rules need to be
 changed to match the device by bus ID (udev KERNELS
 keyword equal to "SysFS BusID" as visible in hwinfo
 --netcard) instead of by MAC address. This allows replacement of
 defective hardware (a network card in the same slot but with a different
 MAC) and prevents confusion when the bond changes the MAC address of all its
 slaves.

 For example:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
KERNELS=="0000:00:19.0", ATTR{dev_id}=="0x0", ATTR{type}=="1",
KERNEL=="eth*", NAME="eth0"

 At boot time, the systemd network.service does not
 wait for the hotplug slaves, but for the bond to become ready, which
 requires at least one available slave. When one of the slave interfaces gets
 removed (unbind from NIC driver, rmmod of the NIC driver
 or true PCI hotplug remove) from the system, the kernel removes it from the
 bond automatically. When a new card is added to the system (replacement of
 the hardware in the slot), udev renames it using
 the bus-based persistent name rule to the name of the slave, and calls
 ifup for it. The ifup call
 automatically joins it into the bond.

For More Information

 In addition to the man pages of exports,
 nfs, and mount, information about
 configuring an NFS server and client is available in
 /usr/share/doc/packages/nfsidmap/README. For further
 documentation online refer to the following Web sites:

	
 Find the detailed technical documentation online at
 SourceForge.

	
 For instructions for setting up kerberized NFS, refer to
 NFS
 Version 4 Open Source Reference Implementation.

	
 If you have questions on NFSv4, refer to the
 Linux
 NFSv4 FAQ.

Installation

 To install a DNS server, start YaST and select
 Software+Software
 Management. Choose
 View+Patterns
 and select DHCP and DNS Server. Confirm the installation
 of the dependent packages to finish the installation process.

 Alternatively use the following command on the command line:

tux > sudo zypper in -t pattern dhcp_dns_server

Kernel Specifications

 The 64-bit kernels for AMD64/Intel 64 offer both a 64-bit and a 32-bit kernel ABI (application
 binary interface). The latter is identical to the ABI for the
 corresponding 32-bit kernel. This means that communication between
 both 32-bit and 64-bit applications with 64-bit kernels are identical.

 The 32-bit system call emulation for 64-bit kernels does not support
 all the APIs used by system programs. This depends on the platform. For this
 reason, few applications, like lspci, must be
 compiled.

 A 64-bit kernel can only load 64-bit kernel modules. You must
 compile 64-bit modules specifically for 64-bit kernels. It is not possible to use 32-bit kernel modules
 with 64-bit kernels.

Kernel-loadable Modules

 Some applications require separate kernel-loadable modules. If you intend
 to use a 32-bit application in a 64-bit system environment, contact
 the provider of the application and SUSE. Make sure that the 64-bit
 version of the kernel-loadable module and the 32-bit compiled version of
 the kernel API are available for this module.

Chapter 10. The systemd Daemon

 The program systemd is the process with process ID 1. It is responsible for
 initializing the system in the required way. systemd is started directly by
 the kernel and resists signal 9, which normally terminates processes.
 All other programs are either started directly by systemd or by one of its
 child processes.

 Systemd is a replacement for the System V init daemon. systemd is fully
 compatible with System V init (by supporting init scripts). One of the main
 advantages of systemd is that it considerably speeds up boot time by
 aggressively paralleling service starts. Furthermore, systemd only starts a
 service when it is really needed. Daemons are not started unconditionally at
 boot time, but rather when being required for the first time. systemd also
 supports Kernel Control Groups (cgroups), snapshotting and restoring the
 system state and more. See http://www.freedesktop.org/wiki/Software/systemd/ for details.

The systemd Concept

 This section will go into detail about the concept behind systemd.

What Is systemd

 systemd is a system and session manager for Linux, compatible with System V
 and LSB init scripts. The main features are:

	
 provides aggressive parallelization capabilities

	
 uses socket and D-Bus activation for starting services

	
 offers on-demand starting of daemons

	
 keeps track of processes using Linux cgroups

	
 supports snapshotting and restoring of the system state

	
 maintains mount and automount points

	
 implements an elaborate transactional dependency-based service control
 logic

Unit File

 A unit configuration file contains information about a service, a socket, a
 device, a mount point, an automount point, a swap file or partition, a
 start-up target, a watched file system path, a timer controlled and
 supervised by systemd, a temporary system state snapshot, a resource
 management slice or a group of externally created processes. “Unit
 file” is a generic term used by systemd for the following:

	Service.
 Information about a process (for example running a daemon); file ends
 with .service

	Targets.
 Used for grouping units and as synchronization points during start-up;
 file ends with .target

	Sockets.
 Information about an IPC or network socket or a file system FIFO, for
 socket-based activation (like
 inetd); file ends with .socket

	Path.
 Used to trigger other units (for example running a service when files
 change); file ends with .path

	Timer.
 Information about a timer controlled, for timer-based activation; file
 ends with .timer

	Mount point.
 Usually auto-generated by the fstab generator; file ends with .mount

	Automount point.
 Information about a file system automount point; file ends with
 .automount

	Swap.
 Information about a swap device or file for memory paging; file ends
 with .swap

	Device.
 Information about a device unit as exposed in the sysfs/udev(7) device
 tree; file ends with .device

	Scope / Slice.
 A concept for hierarchically managing resources of a group of processes;
 file ends with .scope/.slice

 For more information about systemd.unit see
 http://www.freedesktop.org/software/systemd/man/systemd.unit.html

Samba Server in the Network with Active Directory

 If you run Linux servers and Windows servers together, you can build two
 independent authentication systems and networks or connect servers to one
 network with one central authentication system. Because Samba can cooperate
 with an active directory domain, you can join your openSUSE Leap server with
 an Active Directory (AD) domain.

 To join an AD domain proceed as follows:

	
 Log in as root and start YaST.

	
 Start Network Services+Windows
 Domain Membership.

	
 Enter the domain to join at Domain or Workgroup in the
 Windows Domain Membership screen.

Figure 21.1. Determining Windows Domain Membership
[image: Determining Windows Domain Membership]

	
 Check Also Use SMB Information for Linux Authentication
 to use the SMB source for Linux authentication on your server.

	
 Click OK and confirm the domain join when prompted for
 it.

	
 Provide the password for the Windows Administrator on the AD server and
 click OK.

 Your server is now set up to pull in all authentication data from the
 Active Directory domain controller.

Identity Mapping

 In an environment with more than one Samba server, UIDs and GIDs will not
 be created consistently. The UIDs that get assigned to users will be
 dependent on the order in which they first log in, which results in UID
 conflicts across servers. To fix this, you need to use identity mapping.
 See
 https://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/idmapper.html
 for more details.

Using the Squid Cache Manager CGI Interface (cachemgr.cgi)

 The Squid cache manager CGI interface (cachemgr.cgi) is
 a CGI utility for displaying statistics about the memory usage of a running
 Squid process. It is also a convenient way to manage the cache and view
 statistics without logging the server.

Procedure 26.2. Setting up cachemgr.cgi
	
 Make sure the Apache Web server is running on your system. Configure
 Apache as described in Chapter 24, The Apache HTTP Server. In particular, see
 Section “Enabling CGI Scripts”. To check whether Apache is already
 running, use:

 tux >
 sudo
 systemctl status apache2

 If inactive is shown, you can start Apache with the
 openSUSE Leap default settings:

 tux >
 sudo
 systemctl start apache2

	
 Now enable cachemgr.cgi in
 Apache. To do so, create a configuration file for a
 ScriptAlias.

 Create the file in the directory /etc/apache2/conf.d
 and name it cachemgr.conf. In it, add the following:

ScriptAlias /squid/cgi-bin/ /usr/lib64/squid/

<Directory "/usr/lib64/squid/">
Options +ExecCGI
AddHandler cgi-script .cgi
Require host HOST_NAME
</Directory>

 Replace HOST_NAME with the host name of the
 computer you want to access
 cachemgr.cgi from. This allows
 only your computer to access
 cachemgr.cgi. To allow access
 from anywhere, use Require all granted instead.

		
 If Squid and your Apache Web server run on the same computer, there
 should be no changes that need to be made to
 /etc/squid/squid.conf. However, verify that
 /etc/squid/squid.conf contains the following lines:

http_access allow manager localhost
http_access deny manager

 These lines allow you to access the manager interface from your own
 computer (localhost) but not from elsewhere.

	
 If Squid and your Apache Web server run on different computers, you need
 to add extra rules to allow access from the CGI script to Squid. Define
 an ACL for your server (replace WEB_SERVER_IP
 with the IP address of your Web server):

acl webserver src WEB_SERVER_IP/255.255.255.255

 Make sure the following rules are in the configuration file. Compared to
 the default configuration, only the rule in the middle is new. However,
 the sequence is important.

http_access allow manager localhost
http_access allow manager webserver
http_access deny manager

	
 Optionally, you can configure one or more passwords for
 cachemgr.cgi. This also allows
 access to more actions such as closing the cache remotely or viewing more
 information about the cache. For this, configure the options
 cache_mgr and cachemgr_passwd with one
 or more password for the manager and a list of allowed actions.

 For example, to explicitly enable viewing the index page, the menu,
 60-minute average of counters without authentication, to enable toggling
 offline mode using the password secretpassword, and to
 completely disable everything else, use the following configuration:

cache_mgr user
cachemgr_passwd none index menu 60min
cachemgr_passwd secretpassword offline_toggle
cachemgr_passwd disable all

cache_mgr defines a user name. cache_mgr
 defines which actions are allowed using which password.

 The keywords none and disable are
 special: none removes the need for a password,
 disable disables functionality outright.

 The full list of actions can be best seen after logging in to
 cachemgr.cgi. To find out how
 the operation needs to be referenced in the configuration file, see the
 string after &operation= in the URL of the action
 page. all is a special keyword meaning all actions.

	
 Reload Squid and Apache after the configuration file changes:

 tux >
 sudo
 systemctl reload squid

	
 To view the statistics, go to the
 cachemgr.cgi page that you set
 up before. For example, it could be
 http://webserver.example.org/squid/cgi-bin/cachemgr.cgi.

 Choose the right server, and, if set, specify user name and password. Then
 click Continue and browse through the different
 statistics.

Monitoring the Running udev Daemon

 The program udevadm monitor can be used to visualize the
 driver core events and the timing of the
 udev event processes.

UEVENT[1185238505.276660] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1 (usb)
UDEV [1185238505.279198] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1 (usb)
UEVENT[1185238505.279527] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0 (usb)
UDEV [1185238505.285573] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0 (usb)
UEVENT[1185238505.298878] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10 (input)
UDEV [1185238505.305026] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10 (input)
UEVENT[1185238505.305442] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10/mouse2 (input)
UEVENT[1185238505.306440] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10/event4 (input)
UDEV [1185238505.325384] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10/event4 (input)
UDEV [1185238505.342257] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10/mouse2 (input)

 The UEVENT lines show the events the kernel has sent over
 netlink. The UDEV lines show the finished
 udev event handlers. The timing is
 printed in microseconds. The time between UEVENT and
 UDEV is the time
 udev took to process this event or
 the udev daemon has delayed its
 execution to synchronize this event with related and already running events.
 For example, events for hard disk partitions always wait for the main disk
 device event to finish, because the partition events may rely on the data
 that the main disk event has queried from the hardware.

udevadm monitor --env shows the complete event
 environment:

ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10
SUBSYSTEM=input
SEQNUM=1181
NAME="Logitech USB-PS/2 Optical Mouse"
PHYS="usb-0000:00:1d.2-1/input0"
UNIQ=""
EV=7
KEY=70000 0 0 0 0
REL=103
MODALIAS=input:b0003v046DpC03Ee0110-e0,1,2,k110,111,112,r0,1,8,amlsfw
udev also sends messages to syslog.
 The default syslog priority that controls which messages are sent to syslog
 is specified in the udev
 configuration file /etc/udev/udev.conf. The log
 priority of the running daemon can be changed with udevadm control
 --log_priority=LEVEL/NUMBER.

Viewing Logs in GNOME

 You can view the journal with GNOME Logs.
 Start it from the application menu. To view system log messages, it
 needs to be run as root, for example with xdg-su
 gnome-logs. This command can be executed when pressing
 Alt+F2.

Installing/Removing Multiple Kernel Versions with YaST

 You can install or remove multiple kernels with YaST:

	
 Start YaST and open the software manager via Software+Software Management.

	
 List all packages capable of providing multiple versions by choosing
 View+Package Groups+Multiversion Packages.

Figure 6.1. The YaST Software Manager: Multiversion View
[image: The YaST Software Manager: Multiversion View]

	
 Select a package and open its Version tab in the bottom
 pane on the left.

	
 To install a package, click the check box next to it. A green check mark indicates it
 is selected for installation.

 To remove an already installed package (marked with a white check mark),
 click the check box next to it until a red X indicates it is
 selected for removal.

	
 Click Accept to start the installation.

Chapter 24. The Apache HTTP Server

Abstract

 According to the survey from http://www.netcraft.com/,
 the Apache HTTP Server (Apache) is the world's most widely-used Web server.
 Developed by the Apache Software Foundation
 (http://www.apache.org/), it is available for most
 operating systems. openSUSE® Leap includes Apache version 2.4. In this
 chapter, learn how to install, configure and set up a Web server; how to
 use SSL, CGI, and additional modules; and how to troubleshoot Apache.

Quick Start

 With this section, quickly set up and start Apache. You must be root
 to install and configure Apache.

Requirements

 Make sure the following requirements are met before trying to set up the
 Apache Web server:

	
 The machine's network is configured properly. For more information about
 this topic, refer to Chapter 13, Basic Networking.

	
 The machine's exact system time is maintained by synchronizing with a
 time server. This is necessary because parts of the HTTP protocol depend
 on the correct time. See Chapter 18, Time Synchronization with NTP to learn more
 about this topic.

	
 The latest security updates are installed. If in doubt, run a YaST
 Online Update.

	
 The default Web server port (80) is opened in the
 firewall. For this, configure firewalld to allow the service
 http in the public zone.
 See “Configuring the Firewall on the Command Line” (Section “Masquerading and Firewalls”, ↑Security and Hardening Guide) for details.

Installation

 Apache on openSUSE Leap is not installed by default. To install it with a
 standard, predefined configuration that runs “out of the box”,
 proceed as follows:

Procedure 24.1. Installing Apache with the Default Configuration
	
 Start YaST and select Software+Software Management.

	
 Choose View+Patterns and select Web and LAMP Server.

	
 Confirm the installation of the dependent packages to finish the
 installation process.

Start

 You can start Apache automatically at boot time or start it manually.

 To make sure that Apache is automatically started during boot in the
 targets multi-user.target and
 graphical.target, execute the following command:

tux > sudo systemctl enable apache2

 For more information about the systemd targets in openSUSE Leap and a
 description of the YaST Services Manager, refer to
 Section “Managing Services with YaST”.

 To manually start Apache using the shell, run systemctl start
 apache2.

Procedure 24.2. Checking if Apache is Running

 If you do not receive error messages when starting Apache, this usually
 indicates that the Web server is running. To test this:

	
 Start a browser and open http://localhost/.

 If Apache is up and running, you get a test page stating “It
 works!”.

	
 If you do not see this page, refer to
 Section “Troubleshooting”.

 Now that the Web server is running, you can add your own documents, adjust
 the configuration according to your needs, or add functionality by
 installing modules.

Chapter 23. On-Demand Mounting with Autofs

Abstract
autofs is a program that automatically mounts
 specified directories on an on-demand basis. It is based on a kernel module
 for high efficiency, and can manage both local directories and network
 shares. These automatic mount points are mounted only when they are
 accessed, and unmounted after a certain period of inactivity. This
 on-demand behavior saves bandwidth and results in better performance than
 static mounts managed by /etc/fstab. While
 autofs is a control script,
 automount is the command (daemon) that does the actual
 auto-mounting.

Installation

autofs is not installed on openSUSE Leap by
 default. To use its auto-mounting capabilities, first install it with

tux > sudo zypper install autofs

Chapter 7. Graphical User Interface

Abstract
openSUSE Leap includes the X.org server,
 Wayland and the GNOME desktop. This chapter describes the
 configuration of the graphical user interface for all users.

X Window System

 The X.org server is the de facto standard for implementing the X11
 protocol. X is network-based, enabling applications started on one
 host to be displayed on another host connected over any kind of
 network (LAN or Internet).

 Usually, the X Window System needs no configuration. The hardware is
 dynamically detected during X start-up. The use of
 xorg.conf is therefore deprecated. If you still
 need to specify custom options to change the way X behaves, you can
 still do so by modifying configuration files under
 /etc/X11/xorg.conf.d/.

 In openSUSE Leap15.2 Wayland is included as an alternative
 to the X.org server. It can be selected during the installation.

 Install the package xorg-docs to
 get more in-depth information about X11. man 5 xorg.conf
 tells you more about the format of the manual configuration (if needed).
 More information on the X11 development can be found on the project's home
 page at http://www.x.org.

 Drivers are found in xf86-video-* packages, for
 example xf86-video-ati. Many of the drivers
 delivered with these packages are described in detail in the related manual
 page. For example, if you use the ati driver, find more
 information about this driver in man 4 ati.

 Information about third-party drivers is available in
 /usr/share/doc/packages/<package_name>.
 For example, the documentation of x11-video-nvidiaG03 is available in
 /usr/share/doc/packages/x11-video-nvidiaG04
 after the package was installed.

The Linux Boot Process

 The Linux boot process consists of several stages, each represented by a
 different component:

	
 Section “The Initialization and Boot Loader Phase”

	
 Section “The Kernel Phase”

	
 Section “The init on initramfs Phase”

	
 Section “The systemd Phase”

The Initialization and Boot Loader Phase

 During the initialization phase the machine's hardware is set up and the
 devices are prepared. This process differs significantly between hardware
 architectures.

openSUSE Leap uses the boot loader GRUB 2 on all architectures. Depending
 on the architecture and firmware, starting the GRUB 2 boot loader can be a
 multi-step process. The purpose of the boot loader is to load the kernel
 and the initial, RAM-based file system (initramfs). For more information
 about GRUB 2, refer to Chapter 12, The Boot Loader GRUB 2.

Initialization and Boot Loader Phase on AArch64 and AMD64/Intel 64

 After turning on the computer, the BIOS or the UEFI initializes the screen
 and keyboard, and tests the main memory. Up to this stage, the machine
 does not access any mass storage media. Subsequently, the information
 about the current date, time, and the most important peripherals are
 loaded from the CMOS values. When the boot media and its geometry are
 recognized, the system control passes from the BIOS/UEFI to the boot
 loader.

 On a machine equipped with a traditional BIOS, only code from the first
 physical 512-byte data sector (the Master Boot Record, MBR) of the boot
 disk can be loaded. Only a minimal GRUB 2 fits into the MBR. Its sole
 purpose is to load a GRUB 2 core image containing file system drivers from
 the gap between the MBR and the first partition (MBR partition table) or
 from the BIOS boot partition (GPT partition table). This image contains
 file system drivers and therefore is able to access
 /boot located on the root file
 system. /boot contains additional modules for GRUB 2
 core as well as the kernel and the initramfs image. Once it has access to
 this partition, GRUB 2 loads the kernel and the initramfs image into
 memory and hands control over to the kernel.

 When booting a BIOS system from an encrypted file system that includes an
 encrypted /boot partition, you need to enter the
 password for decryption twice. It is first needed by GRUB 2 to decrypt
 /boot and then for systemd to mount the encrypted
 volumes.

 On machines with UEFI the boot process is much simpler than on machines
 with a traditional BIOS. The firmware is able to read from a FAT formatted
 system partition of disks with a GPT partition table. This EFI
 system-partition (in the running system mounted as
 /boot/efi) holds enough space to host a fully-fledged
 GRUB 2 which is directly loaded and executed by the firmware.

 If the BIOS/UEFI supports network booting, it is also possible to
 configure a boot server that provides the boot loader. The system can then
 be booted via PXE. The BIOS/UEFI acts as the boot loader. It gets the boot
 image from the boot server and starts the system. This is completely
 independent of local hard disks.

The Kernel Phase

 When the boot loader has passed on system control, the boot process is the
 same on all architectures. The boot loader loads both the kernel and an
 initial RAM-based file system (initramfs) into
 memory and the kernel takes over.

 After the kernel has set up memory management and has detected the CPU type
 and its features, it initializes the hardware and mounts the temporary root
 file system from the memory that was loaded with the
 initramfs.

The initramfs file

initramfs (initial RAM file system) is a small
 cpio archive that the kernel can load into a RAM disk. It is located at
 /boot/initrd. It can be created with a tool called
 dracut—refer to man 8 dracut
 for details.

 The initramfs provides a minimal Linux
 environment that enables the execution of programs before the actual root
 file system is mounted. This minimal Linux environment is loaded into
 memory by BIOS or UEFI routines and does not have specific hardware
 requirements other than sufficient memory. The
 initramfs archive must always provide an
 executable named init that executes the systemd
 daemon on the root file system for the boot process to proceed.

 Before the root file system can be mounted and the operating system can be
 started, the kernel needs the corresponding drivers to access the device
 on which the root file system is located. These drivers may include
 special drivers for certain kinds of hard disks or even network drivers to
 access a network file system. The needed modules for the root file system
 are loaded by init on
 initramfs. After the modules are loaded,
 udev provides the
 initramfs with the needed devices. Later in the
 boot process, after changing the root file system, it is necessary to
 regenerate the devices. This is done by the systemd unit
 systemd-udev-trigger.service.

Regenerating the initramfs

 Because the initramfs contains drivers, it needs
 to be updated whenever a new version of one of its drivers is
 available. This is done automatically when installing the package
 containing the driver update. YaST or zypper will inform you about
 this by showing the output of the command that generates the
 initramfs. However, there are some occasions
 when you need to regenerate an initramfs
 manually:

	
 Adding Drivers Because of Hardware Changes

	
 Moving System Directories to a RAID or LVM

	
 Adding Disks to an LVM Group or Btrfs RAID Containing the Root
 File System

	
 Changing Kernel Variables

	Adding Drivers Because of Hardware Changes
	
 If you need to change hardware (for example, hard disks), and this
 hardware requires different drivers to be in the kernel at boot time,
 you must update the initramfs file.

 Open or create
 /etc/dracut.conf.d/10-DRIVER.conf
 and add the following line (mind the leading whitespace):

force_drivers+=" DRIVER1"

 Replace DRIVER1 with the module name of the
 driver. If you need to add more than one driver, list them
 space-separated:

force_drivers+=" DRIVER1DRIVER2"

 Proceed with Procedure 9.1, “Generate an initramfs”.

	Moving System Directories to a RAID or LVM
	
 Whenever you move swap files, or system directories like
 /usr in a running system to a RAID or logical
 volume, you need to create an initramfs that
 contains support for software RAID or LVM drivers.

 To do so, create the respective entries in
 /etc/fstab and mount the new entries (for example
 with mount -a and/or swapon -a).

 Proceed with Procedure 9.1, “Generate an initramfs”.

	Adding Disks to an LVM Group or Btrfs RAID Containing the Root
 File System
	
 Whenever you add (or remove) a disk to a logical volume group
 or a Btrfs RAID containing the root file system, you need to create an
 initramfs that contains support for the
 enlarged volume. Follow the instructions at Procedure 9.1, “Generate an initramfs”.

 Proceed with Procedure 9.1, “Generate an initramfs”.

	Changing Kernel Variables
	
 If you change the values of kernel variables via the
 sysctl interface by editing related files
 (/etc/sysctl.conf or
 /etc/sysctl.d/*.conf), the change will be lost on
 the next system reboot. Even if you load the values with sysctl
 --system at runtime, the changes are not saved into the
 initramfs file. You need to update it by
 proceeding as outlined in Procedure 9.1, “Generate an initramfs”.

Procedure 9.1. Generate an initramfs

 Note that all commands in the following procedure need to be executed as
 user root.

	
 Generate a new initramfs file by running

dracut MY_INITRAMFS

 Replace MY_INITRAMFS with a file name of
 your choice. The new initramfs will be created
 as /boot/MY_INITRAMFS.

 Alternatively, run dracut -f. This will overwrite
 the currently used, existing file.

	
 (Skip this step if you ran dracut -f in the previous
 step.) Create a link to the initramfs file you
 created in the previous step:

(cd /boot && ln -sf MY_INITRAMFS initrd)

The init on initramfs Phase

 The temporary root file system mounted by the kernel from the
 initramfs contains the executable systemd (which
 is called init on
 initramfs in the following, also see Section “Terminology”. This program performs all actions needed
 to mount the proper root file system. It provides kernel functionality for
 the needed file system and device drivers for mass storage controllers with
 udev.

 The main purpose of init on
 initramfs is to prepare the mounting of and access
 to the real root file system. Depending on your system configuration,
 init on initramfs is
 responsible for the following tasks.

	Loading Kernel Modules
	
 Depending on your hardware configuration, special drivers may be needed
 to access the hardware components of your computer (the most important
 component being your hard disk). To access the final root file system,
 the kernel needs to load the proper file system drivers.

	Providing Block Special Files
	
 The kernel generates device events depending on loaded modules.
 udev handles these events and
 generates the required special block files on a RAM file system in
 /dev. Without those special files, the file system
 and other devices would not be accessible.

	Managing RAID and LVM Setups
	
 If you configured your system to hold the root file system under RAID or
 LVM, init on initramfs
 sets up LVM or RAID to enable access to the root file system later.

	Managing the Network Configuration
	
 If you configured your system to use a network-mounted root file system
 (mounted via NFS), init must make sure that the
 proper network drivers are loaded and that they are set up to allow
 access to the root file system.

 If the file system resides on a network block device like iSCSI or SAN,
 the connection to the storage server is also set up by
 init on initramfs.
 openSUSE Leap supports booting from a secondary iSCSI target if the
 primary target is not available. .

Handling of Mount Failures

 If the root file system fails to mount from within the boot environment,
 it must be checked and repaired before the boot can continue. The file
 system checker will be automatically started for Ext3 and Ext4 file
 systems. The repair process is not automated for XFS and Btrfs file
 systems, and the user is presented with information describing the
 options available to repair the file system. When the file system has been
 successfully repaired, exiting the boot environment will cause the system
 to retry mounting the root file system. If successful, the boot will
 continue normally.

The init on initramfs Phase in the Installation Process

 When init on initramfs
 is called during the initial boot as part of the installation process, its
 tasks differ from those mentioned above. Note that the installation system
 also does not start systemd from
 initramfs—these tasks are performed by
 linuxrc.

	Finding the Installation Medium
	
 When starting the installation process, your machine loads an
 installation kernel and a special init
 containing the YaST installer. The YaST installer is running in a
 RAM file system and needs to have information about the location of the
 installation medium to access it for installing the operating system.

	
 Initiating Hardware Recognition and Loading Appropriate Kernel Modules

	
 As mentioned in Section “The initramfs file”, the boot process
 starts with a minimum set of drivers that can be used with most
 hardware configurations. On AArch64, POWER, and AMD64/Intel 64 machines,
 linuxrc starts an initial hardware scanning process
 that determines the set of drivers suitable for your hardware
 configuration. On IBM Z, a list of drivers and their parameters
 needs to be provided, for example via linuxrc or a parmfile.

 These drivers are used to generate a custom
 initramfs that is needed to boot the
 system. If the modules are not needed for boot but for coldplug, the
 modules can be loaded with systemd; for more information, see Section “Loading Kernel Modules”.

	Loading the Installation System
	
 When the hardware is properly recognized, the appropriate drivers are
 loaded. The udev program
 creates the special device files and linuxrc
 starts the installation system with the YaST installer.

	Starting YaST
	
 Finally, linuxrc starts YaST, which starts
 the package installation and the system configuration.

The systemd Phase

 After the “real” root file system has been found, it is
 checked for errors and mounted. If this is successful, the
 initramfs is cleaned and the systemd daemon on
 the root file system is executed. systemd is Linux's system and service
 manager. It is the parent process that is started as PID 1 and acts as an
 init system which brings up and maintains user space services. See Chapter 10, The systemd Daemon for details.

LVM Configuration

 This section explains specific steps to take when configuring LVM.

Back up Your Data

 Using LVM is sometimes associated with increased risk such as data loss.
 Risks also include application crashes, power failures, and faulty commands.
 Save your data before implementing LVM or reconfiguring volumes. Never work
 without a backup.

 The YaST LVM configuration can be reached from the YaST Expert
 Partitioner (see Section “Using the Expert Partitioner”) within the
 Volume Management item in the System
 View pane. The Expert Partitioner allows you to edit and delete
 existing partitions and create new ones that need to be used with LVM.

Create Physical Volume

 The first task is to create physical volumes that provide space to a volume group:

	
 Select a hard disk from Hard Disks.

	
 Change to the Partitions tab.

	
 Click Add and enter the desired size of the PV on this
 disk.

	
 Use Do not format partition and change the
 File System ID to 0x8E Linux LVM. Do
 not mount this partition.

	
 Repeat this procedure until you have defined all the desired physical
 volumes on the available disks.

Creating Volume Groups

 If no volume group exists on your system, you must add one (see
 Figure 5.3, “Creating a Volume Group”). It is possible to create additional
 groups by clicking Volume Management in the
 System View pane, and then on Add Volume
 Group. One single volume group is usually sufficient.

	
 Enter a name for the VG, for example, system.

	
 Select the desired Physical Extend Size. This value
 defines the size of a physical block in the volume group. All the disk
 space in a volume group is handled in blocks of this size.

	
 Add the prepared PVs to the VG by selecting the device and clicking
 Add. Selecting several devices is possible by holding
 Ctrl while selecting the devices.

	
 Select Finish to make the VG available to further
 configuration steps.

Figure 5.3. Creating a Volume Group
[image: Creating a Volume Group]

 If you have multiple volume groups defined and want to add or remove PVs,
 select the volume group in the Volume Management list
 and click Resize. In the following window, you can add
 or remove PVs to the selected volume group.

Configuring Logical Volumes

 After the volume group has been filled with PVs, define the LVs which the
 operating system should use in the next dialog. Choose the current volume
 group and change to the Logical Volumes tab.
 Add, Edit, Resize,
 and Delete LVs as needed until all space in the volume
 group has been occupied. Assign at least one LV to each volume group.

Figure 5.4. Logical Volume Management
[image: Logical Volume Management]

 Click Add and go through the wizard-like pop-up that
 opens:

	
 Enter the name of the LV. For a partition that should be mounted to
 /home, a name like HOME could be
 used.

	
 Select the type of the LV. It can be either Normal
 Volume, Thin Pool, or Thin
 Volume. Note that you need to create a thin pool first, which
 can store individual thin volumes. The big advantage of thin provisioning
 is that the total sum of all thin volumes stored in a thin pool can
 exceed the size of the pool itself.

	
 Select the size and the number of stripes of the LV. If you have only one
 PV, selecting more than one stripe is not useful.

	
 Choose the file system to use on the LV and the mount point.

 By using stripes it is possible to distribute the data stream in the LV
 among several PVs (striping). However, striping a volume can only be done
 over different PVs, each providing at least the amount of space of the
 volume. The maximum number of stripes equals to the number of PVs, where
 Stripe "1" means "no striping". Striping only makes sense with PVs on
 different hard disks, otherwise performance will decrease.

Striping

 YaST cannot, at this point, verify the correctness of your entries
 concerning striping. Any mistake made here is apparent only later when the
 LVM is implemented on disk.

 If you have already configured LVM on your system, the existing logical
 volumes can also be used. Before continuing, assign appropriate mount
 points to these LVs. With Finish, return to the YaST
 Expert Partitioner and finish your work there.

 Reference

Contents
	About This Guide
		Available Documentation
	Giving Feedback
	Documentation Conventions
	Source Code
	Acknowledgments

	I. Advanced Administration
		1. YaST in Text Mode
		Navigation in Modules
	Advanced Key Combinations
	Restriction of Key Combinations
	YaST Command Line Options
		Installing Packages from the Command Line
	Working with Individual Modules
	Command Line Parameters of YaST Modules

	2. Managing Software with Command Line Tools
		Using Zypper
		General Usage
	Using Zypper Subcommands
	Installing and Removing Software with Zypper
	Updating Software with Zypper
	Identifying Processes and Services Using Deleted Files
	Managing Repositories with Zypper
	Querying Repositories and Packages with Zypper
	Configuring Zypper
	Troubleshooting
	Zypper Rollback Feature on Btrfs File System
	For More Information

	RPM—the Package Manager
		Verifying Package Authenticity
	Managing Packages: Install, Update, and Uninstall
	Delta RPM Packages
	RPM Queries
	Installing and Compiling Source Packages
	Compiling RPM Packages with build
	Tools for RPM Archives and the RPM Database

	3. System Recovery and Snapshot Management with Snapper
		Default Setup
		Default Settings
	Types of Snapshots
	Directories That Are Excluded from Snapshots
	Customizing the Setup

	Using Snapper to Undo Changes
		Undoing YaST and Zypper Changes
	Using Snapper to Restore Files

	System Rollback by Booting from Snapshots
		Snapshots after Rollback
	Accessing and Identifying Snapshot Boot Entries
	Limitations

	Enabling Snapper in User Home Directories
		Installing pam_snapper and Creating Users
	Removing Users
	Manually Enabling Snapshots in Home Directories

	Creating and Modifying Snapper Configurations
		Managing Existing Configurations

	Manually Creating and Managing Snapshots
		Snapshot Metadata
	Creating Snapshots
	Modifying Snapshot Metadata
	Deleting Snapshots

	Automatic Snapshot Clean-Up
		Cleaning Up Numbered Snapshots
	Cleaning Up Timeline Snapshots
	Cleaning Up Snapshot Pairs That Do Not Differ
	Cleaning Up Manually Created Snapshots
	Adding Disk Quota Support

	Showing Exclusive Disk Space Used by Snapshots
	Frequently Asked Questions

	4. Remote Graphical Sessions with VNC
		The vncviewer Client
		Connecting Using the vncviewer CLI
	Connecting Using the vncviewer GUI
	Notification of Unencrypted Connections

	Remmina: the Remote Desktop Client
		Installation
	Main Window
	Adding Remote Sessions
	Starting Remote Sessions
	Editing, Copying, and Deleting Saved Sessions
	Running Remote Sessions from the Command Line

	Configuring One-time Sessions on the VNC Server
		Available Configurations
	Initiating a One-time VNC Session
	Configuring One-time VNC Sessions

	Configuring Persistent VNC Server Sessions
		VNC Session Initiated Using vncserver
	VNC Session Initiated Using vncmanager

	Configuring Encryption on the VNC Server

	5. Expert Partitioner
		Using the Expert Partitioner
		Partition Tables
	Partitions
	Editing a Partition
	Expert Options
	Advanced Options
	More Partitioning Tips
	Partitioning and LVM

	LVM Configuration
		Create Physical Volume
	Creating Volume Groups
	Configuring Logical Volumes

	Soft RAID
		Soft RAID Configuration
	Troubleshooting
	For More Information

	6. Installing Multiple Kernel Versions
		Enabling and Configuring Multiversion Support
		Automatically Deleting Unused Kernels
	Use Case: Deleting an Old Kernel after Reboot Only
	Use Case: Keeping Older Kernels as Fallback
	Use Case: Keeping a Specific Kernel Version

	Installing/Removing Multiple Kernel Versions with YaST
	Installing/Removing Multiple Kernel Versions with Zypper
	
 Installing the Latest Kernel Version from the Repository Kernel:HEAD

	7. Graphical User Interface
		X Window System
	Installing and Configuring Fonts
		Showing Installed Fonts
	Viewing Fonts
	Querying Fonts
	Installing Fonts
	Configuring the Appearance of Fonts

	GNOME Configuration for Administrators
		The dconf System
	System-wide Configuration
	More Information

	Switching Between Intel and NVIDIA Optimus GPUs with SUSE Prime
		Prerequisites
	Installing and Using SUSE Prime
	Installing NVIDIA Drivers

	II. System
		8. 32-Bit and 64-Bit Applications in a 64-Bit System Environment
		Runtime Support
	Kernel Specifications

	9. Introduction to the Boot Process
		Terminology
	The Linux Boot Process
		The Initialization and Boot Loader Phase
	The Kernel Phase
	The init on initramfs Phase
	The systemd Phase

	10. The systemd Daemon
		The systemd Concept
		What Is systemd
	Unit File

	Basic Usage
		Managing Services in a Running System
	Permanently Enabling/Disabling Services

	System Start and Target Management
		Targets Compared to Runlevels
	Debugging System Start-Up
	System V Compatibility

	Managing Services with YaST
	Customizing systemd
		Customizing Unit Files
	Creating “Drop-in” Files
	Creating Custom Targets

	Advanced Usage
		Cleaning Temporary Directories
	System Log
	Snapshots
	Loading Kernel Modules
	Performing Actions before Loading a Service
	Kernel Control Groups (cgroups)
	Terminating Services (Sending Signals)
	Important Notes on the D-Bus Service
	Debugging Services

	More Information

	11. journalctl: Query the systemd Journal
		Making the Journal Persistent
	journalctl Useful Switches
	Filtering the Journal Output
		Filtering Based on a Boot Number
	Filtering Based on Time Interval
	Filtering Based on Fields

	Investigating systemd Errors
	Journald Configuration
		Changing the Journal Size Limit
	Forwarding the Journal to /dev/ttyX
	Forwarding the Journal to Syslog Facility

	Using YaST to Filter the systemd Journal
	Viewing Logs in GNOME

	12. The Boot Loader GRUB 2
		Main Differences between GRUB Legacy and GRUB 2
	Configuration File Structure
		The File /boot/grub2/grub.cfg
	The File /etc/default/grub
	Scripts in /etc/grub.d
	Mapping between BIOS Drives and Linux Devices
	Editing Menu Entries during the Boot Procedure
	Setting a Boot Password

	Configuring the Boot Loader with YaST
		Boot Loader Location and Boot Code Options
	Adjusting the Disk Order
	Configuring Advanced Options

	Helpful GRUB 2 Commands
	More Information

	13. Basic Networking
		IP Addresses and Routing
		IP Addresses
	Netmasks and Routing

	IPv6—The Next Generation Internet
		Advantages
	Address Types and Structure
	Coexistence of IPv4 and IPv6
	Configuring IPv6
	For More Information

	Name Resolution
	Configuring a Network Connection with YaST
		Configuring the Network Card with YaST

	NetworkManager
		NetworkManager and wicked
	NetworkManager Functionality and Configuration Files
	Controlling and Locking Down NetworkManager Features

	Configuring a Network Connection Manually
		The wicked Network Configuration
	Configuration Files
	Testing the Configuration
	Unit Files and Start-Up Scripts

	Basic Router Setup
	Setting Up Bonding Devices
		Hotplugging of Bonding Slaves

	Setting Up Team Devices for Network Teaming
		Use Case: Load Balancing with Network Teaming
	Use Case: Failover with Network Teaming
	Use Case: VLAN over Team Device

	Software-Defined Networking with Open vSwitch
		Advantages of Open vSwitch
	Installing Open vSwitch
	Overview of Open vSwitch Daemons and Utilities
	Creating a Bridge with Open vSwitch
	Using Open vSwitch Directly with KVM
	Using Open vSwitch with libvirt
	For More Information

	14. UEFI (Unified Extensible Firmware Interface)
		Secure Boot
		Implementation on openSUSE Leap
	MOK (Machine Owner Key)
	Booting a Custom Kernel
	Using Non-Inbox Drivers
	Features and Limitations

	For More Information

	15. Special System Features
		Information about Special Software Packages
		The bash Package and /etc/profile
	The cron Package
	Stopping Cron Status Messages
	Log Files: Package logrotate
	The locate Command
	The ulimit Command
	The free Command
	Man Pages and Info Pages
	Selecting Man Pages Using the man Command
	Settings for GNU Emacs

	Virtual Consoles
	Keyboard Mapping
	Language and Country-Specific Settings
		System Wide Locale Settings
	Some Examples
	Locale Settings in ~/.i18n
	Settings for Language Support
	For More Information

	16. Dynamic Kernel Device Management with udev
		The /dev Directory
	Kernel uevents and udev
	Drivers, Kernel Modules and Devices
	Booting and Initial Device Setup
	Monitoring the Running udev Daemon
	Influencing Kernel Device Event Handling with udev Rules
		Using Operators in udev Rules
	Using Substitutions in udev Rules
	Using udev Match Keys
	Using udev Assign Keys

	Persistent Device Naming
	Files used by udev
	For More Information

	III. Services
		17. SLP
		The SLP Front-End slptool
	Providing Services via SLP
		Setting up an SLP Installation Server

	For More Information

	18. Time Synchronization with NTP
		Configuring an NTP Client with YaST
		NTP Daemon Start
	Type of the Configuration Source
	Configure Time Servers

	Manually Configuring NTP in the Network
	Configure chronyd at Runtime Using chronyc
	Dynamic Time Synchronization at Runtime
	Setting Up a Local Reference Clock

	19. The Domain Name System
		DNS Terminology
	Installation
	Configuration with YaST
		Wizard Configuration
	Expert Configuration

	Starting the BIND Name Server
	The /etc/named.conf Configuration File
		Important Configuration Options
	Logging
	Zone Entries

	Zone Files
	Dynamic Update of Zone Data
	Secure Transactions
	DNS Security
	For More Information

	20. DHCP
		Configuring a DHCP Server with YaST
		Initial Configuration (Wizard)
	DHCP Server Configuration (Expert)

	DHCP Software Packages
	The DHCP Server dhcpd
		Clients with Fixed IP Addresses
	The openSUSE Leap Version

	For More Information

	21. Samba
		Terminology
	Installing a Samba Server
	Starting and Stopping Samba
	Configuring a Samba Server
		Configuring a Samba Server with YaST
	Configuring the Server Manually

	Configuring Clients
		Configuring a Samba Client with YaST
	Mounting SMB1/CIFS Shares on Clients

	Samba as Login Server
	Samba Server in the Network with Active Directory
	Advanced Topics
		Transparent File Compression on Btrfs
	Snapshots

	For More Information

	22. Sharing File Systems with NFS
		Overview
	Installing NFS Server
	Configuring NFS Server
		Exporting File Systems with YaST
	Exporting File Systems Manually
	NFS with Kerberos

	Configuring Clients
		Importing File Systems with YaST
	Importing File Systems Manually
	Parallel NFS (pNFS)

	For More Information

	23. On-Demand Mounting with Autofs
		Installation
	Configuration
		The Master Map File
	Map Files

	Operation and Debugging
		Controlling the autofs Service
	Debugging the Automounter Problems

	Auto-Mounting an NFS Share
	Advanced Topics
		/net Mount Point
	Using Wild Cards to Auto-Mount Subdirectories
	Auto-Mounting CIFS File System

	24. The Apache HTTP Server
		Quick Start
		Requirements
	Installation
	Start

	Configuring Apache
		Apache Configuration Files
	Configuring Apache Manually
	Configuring Apache with YaST

	Starting and Stopping Apache
	Installing, Activating, and Configuring Modules
		Module Installation
	Activation and Deactivation
	Base and Extension Modules
	Multiprocessing Modules
	External Modules
	Compilation

	Enabling CGI Scripts
		Apache Configuration
	Running an Example Script
	CGI Troubleshooting

	Setting Up a Secure Web Server with SSL
		Creating an SSL Certificate
	Configuring Apache with SSL

	Running Multiple Apache Instances on the Same Server
	Avoiding Security Problems
		Up-to-Date Software
	DocumentRoot Permissions
	File System Access
	CGI Scripts
	User Directories

	Troubleshooting
	For More Information
		Apache 2.4
	Apache Modules
	Development

	25. Setting Up an FTP Server with YaST
		Starting the FTP Server
	FTP General Settings
	FTP Performance Settings
	Authentication
	Expert Settings
	For More Information

	26. Squid Caching Proxy Server
		Some Facts about Proxy Servers
		Squid and Security
	Multiple Caches
	Caching Internet Objects

	System Requirements
		RAM
	CPU
	Size of the Disk Cache
	Hard Disk/SSD Architecture

	Basic Usage of Squid
		Starting Squid
	Checking Whether Squid Is Working
	Stopping, Reloading, and Restarting Squid
	Removing Squid
	Local DNS Server

	The YaST Squid Module
	The Squid Configuration File
		General Configuration Options
	Options for Access Controls

	Configuring a Transparent Proxy
	Using the Squid Cache Manager CGI Interface (cachemgr.cgi)
	Cache Report Generation with Calamaris
	For More Information

	IV. Mobile Computers
		27. Mobile Computing with Linux
		Laptops
		Power Conservation
	Integration in Changing Operating Environments
	Software Options
	Data Security

	Mobile Hardware
	Mobile Devices (Smartphones and Tablets)

	28. Using NetworkManager
		Use Cases for NetworkManager
	Enabling or Disabling NetworkManager
	Configuring Network Connections
		Managing Wired Network Connections
	Managing Wireless Network Connections
	Configuring Your Wi-Fi/Bluetooth Card as an Access Point
	NetworkManager and VPN

	NetworkManager and Security
		User and System Connections
	Storing Passwords and Credentials

	Frequently Asked Questions
	Troubleshooting
	For More Information

	29. Power Management
		Power Saving Functions
	Advanced Configuration and Power Interface (ACPI)
		Controlling the CPU Performance
	Troubleshooting

	Rest for the Hard Disk
	Troubleshooting
		CPU Frequency Does Not Work

	A. An Example Network
	B. GNU Licenses
		GNU Free Documentation License

Advanced Usage

 The following sections cover advanced topics for system administrators. For
 even more advanced systemd documentation, refer to Lennart Pöttering's
 series about systemd for administrators at
 http://0pointer.de/blog/projects.

Cleaning Temporary Directories

systemd supports cleaning temporary directories regularly. The
 configuration from the previous system version is automatically migrated
 and active. tmpfiles.d—which is responsible for
 managing temporary files—reads its configuration from
 /etc/tmpfiles.d/*.conf ,
 /run/tmpfiles.d/*.conf, and
 /usr/lib/tmpfiles.d/*.conf files. Configuration placed
 in /etc/tmpfiles.d/*.conf overrides related
 configurations from the other two directories
 (/usr/lib/tmpfiles.d/*.conf is where packages store
 their configuration files).

 The configuration format is one line per path containing action and path,
 and optionally mode, ownership, age and argument fields, depending on the
 action. The following example unlinks the X11 lock files:

Type Path Mode UID GID Age Argument
r /tmp/.X[0-9]*-lock

 To get the status the tmpfile timer:

tux > sudo systemctl status systemd-tmpfiles-clean.timer
systemd-tmpfiles-clean.timer - Daily Cleanup of Temporary Directories
 Loaded: loaded (/usr/lib/systemd/system/systemd-tmpfiles-clean.timer; static)
 Active: active (waiting) since Tue 2018-04-09 15:30:36 CEST; 1 weeks 6 days ago
 Docs: man:tmpfiles.d(5)
 man:systemd-tmpfiles(8)

Apr 09 15:30:36 jupiter systemd[1]: Starting Daily Cleanup of Temporary Directories.
Apr 09 15:30:36 jupiter systemd[1]: Started Daily Cleanup of Temporary Directories.

 For more information on temporary files handling, see man 5
 tmpfiles.d.

System Log

Section “Debugging Services” explains how
 to view log messages for a given service. However, displaying log messages
 is not restricted to service logs. You can also access and query the
 complete log messages written by systemd—the so-called
 “Journal”. Use the command
 journalctl to display the complete log messages
 starting with the oldest entries. Refer to man 1
 journalctl for options such as applying filters or
 changing the output format.

Snapshots

 You can save the current state of systemd to a named snapshot and later
 revert to it with the isolate subcommand. This is useful
 when testing services or custom targets, because it allows you to return to
 a defined state at any time. A snapshot is only available in the current
 session and will automatically be deleted on reboot. A snapshot name must
 end in .snapshot.

	Create a Snapshot
	tux > sudo systemctl snapshot MY_SNAPSHOT.snapshot

	Delete a Snapshot
	tux > sudo systemctl delete MY_SNAPSHOT.snapshot

	View a Snapshot
	tux > sudo systemctl show MY_SNAPSHOT.snapshot

	Activate a Snapshot
	tux > sudo systemctl isolate MY_SNAPSHOT.snapshot

Loading Kernel Modules

 With systemd, kernel modules can automatically be loaded at boot time via
 a configuration file in /etc/modules-load.d. The file
 should be named MODULE.conf and have the
 following content:

load module MODULE at boot time
MODULE

 In case a package installs a configuration file for loading a kernel
 module, the file gets installed to
 /usr/lib/modules-load.d. If two configuration files
 with the same name exist, the one in
 /etc/modules-load.d tales precedence.

 For more information, see the modules-load.d(5)
 man page.

Performing Actions before Loading a Service

 With System V init actions that need to be performed before loading a
 service, needed to be specified in /etc/init.d/before.local
 . This procedure is no longer supported with systemd. If you
 need to do actions before starting services, do the following:

	Loading Kernel Modules
	
 Create a drop-in file in /etc/modules-load.d
 directory (see man modules-load.d for the syntax)

	
 Creating Files or Directories, Cleaning-up Directories, Changing
 Ownership

	
 Create a drop-in file in /etc/tmpfiles.d (see
 man tmpfiles.d for the syntax)

	Other Tasks
	
 Create a system service file, for example
 /etc/systemd/system/before.service, from the
 following template:

[Unit]
Before=NAME OF THE SERVICE YOU WANT THIS SERVICE TO BE STARTED BEFORE
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=YOUR_COMMAND
beware, executable is run directly, not through a shell, check the man pages
systemd.service and systemd.unit for full syntax
[Install]
target in which to start the service
WantedBy=multi-user.target
#WantedBy=graphical.target

 When the service file is created, you should run the following commands
 (as root):

tux > sudo systemctl daemon-reload
tux > sudo systemctl enable before

 Every time you modify the service file, you need to run:

tux > sudo systemctl daemon-reload

Kernel Control Groups (cgroups)

 On a traditional System V init system it is not always possible to clearly
 assign a process to the service that spawned it. Some services, such as
 Apache, spawn a lot of third-party processes (for example CGI or Java
 processes), which themselves spawn more processes. This makes a clear
 assignment difficult or even impossible. Additionally, a service may not
 terminate correctly, leaving some children alive.

 systemd solves this problem by placing each service into its own cgroup.
 cgroups are a kernel feature that allows aggregating processes and all
 their children into hierarchical organized groups. systemd names each
 cgroup after its service. Since a non-privileged process is not allowed to
 “leave” its cgroup, this provides an effective way to label
 all processes spawned by a service with the name of the service.

 To list all processes belonging to a service, use the command
 systemd-cgls. The result will look like the following
 (shortened) example:

Example 10.3. List all Processes Belonging to a Service
root # systemd-cgls --no-pager
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ ├─session-102.scope
│ │ ├─12426 gdm-session-worker [pam/gdm-password]
│ │ ├─15831 gdm-session-worker [pam/gdm-password]
│ │ ├─15839 gdm-session-worker [pam/gdm-password]
│ │ ├─15858 /usr/lib/gnome-terminal-server

[...]

└─system.slice
 ├─systemd-hostnamed.service
 │ └─17616 /usr/lib/systemd/systemd-hostnamed
 ├─cron.service
 │ └─1689 /usr/sbin/cron -n
 ├─postfix.service
 │ ├─ 1676 /usr/lib/postfix/master -w
 │ ├─ 1679 qmgr -l -t fifo -u
 │ └─15590 pickup -l -t fifo -u
 ├─sshd.service
 │ └─1436 /usr/sbin/sshd -D

[...]

 See “Kernel Control Groups” (↑System Analysis and Tuning Guide) for more information about
 cgroups.

Terminating Services (Sending Signals)

 As explained in Section “Kernel Control Groups (cgroups)”, it is
 not always possible to assign a process to its parent service process in a
 System V init system. This makes it difficult to terminate a service and
 all of its children. Child processes that have not been terminated will
 remain as zombie processes.

 systemd's concept of confining each service into a cgroup makes it possible
 to clearly identify all child processes of a service and therefore allows
 you to send a signal to each of these processes. Use systemctl
 kill to send signals to services. For a list of available signals
 refer to man 7 signals.

	Sending SIGTERM to a Service
	SIGTERM is the default signal that is sent.

tux > sudo systemctl kill MY_SERVICE

	Sending SIGNAL to a Service
	
 Use the -s option to specify the signal that should be
 sent.

tux > sudo systemctl kill -s SIGNALMY_SERVICE

	Selecting Processes
	
 By default the kill command sends the signal to
 all processes of the specified cgroup. You can restrict
 it to the control or the main process.
 The latter is for example useful to force a service to reload its
 configuration by sending SIGHUP:

tux > sudo systemctl kill -s SIGHUP --kill-who=main MY_SERVICE

Important Notes on the D-Bus Service

 The D-Bus service is the message bus for communication between systemd
 clients and the systemd manager that is running as pid 1. Even though
 dbus is a stand-alone daemon, it
 is an integral part of the init infrastructure.

 Terminating dbus or restarting it
 in the running system is similar to an attempt to terminate or restart pid
 1. It will break systemd client/server communication and make most systemd
 functions unusable.

 Therefore, terminating or restarting
 dbus is neither recommended
 nor supported.

 Updating the dbus or
 dbus-related packages requires a reboot. When in
 doubt whether a reboot is necessary, run the sudo zypper ps
 -s. If dbus appears among the listed
 services, you need to reboot the system.

 Keep in mind that dbus is updated even when
 automatic updates are configured to skip the packages that require reboot.

Debugging Services

 By default, systemd is not overly verbose. If a service was started
 successfully, no output will be produced. In case of a failure, a short
 error message will be displayed. However, systemctl
 status provides means to debug start-up and operation of a
 service.

 systemd comes with its own logging mechanism (“The Journal”)
 that logs system messages. This allows you to display the service messages
 together with status messages. The status command works
 similar to tail and can also display the log messages in
 different formats, making it a powerful debugging tool.

	Show Service Start-Up Failure
	
 Whenever a service fails to start, use systemctl status
 MY_SERVICE to get a detailed error
 message:

root # systemctl start apache2
Job failed. See system journal and 'systemctl status' for details.
root # systemctl status apache2
 Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled)
 Active: failed (Result: exit-code) since Mon, 04 Apr 2018 16:52:26 +0200; 29s ago
 Process: 3088 ExecStart=/usr/sbin/start_apache2 -D SYSTEMD -k start (code=exited, status=1/FAILURE)
 CGroup: name=systemd:/system/apache2.service

Apr 04 16:52:26 g144 start_apache2[3088]: httpd2-prefork: Syntax error on line
205 of /etc/apache2/httpd.conf: Syntax error on li...alHost>

	Show Last N Service Messages
	
 The default behavior of the status subcommand is to
 display the last ten messages a service issued. To change the number of
 messages to show, use the
 --lines=N parameter:

tux > sudo systemctl status chronyd
tux > sudo systemctl --lines=20 status chronyd

	Show Service Messages in Append Mode
	
 To display a “live stream” of service messages, use the
 --follow option, which works like
 tail-f:

tux > sudo systemctl --follow status chronyd

	Messages Output Format
	
 The --output=MODE parameter
 allows you to change the output format of service messages. The most
 important modes available are:

	
 short

	
 The default format. Shows the log messages with a human readable time
 stamp.

	
 verbose

	
 Full output with all fields.

	
 cat

	
 Terse output without time stamps.

The /etc/named.conf Configuration File

 All the settings for the BIND name server itself are stored in the
 /etc/named.conf file. However, the zone data for the
 domains to handle (consisting of the host names, IP addresses, and so on)
 are stored in separate files in the /var/lib/named
 directory. The details of this are described later.

/etc/named.conf is roughly divided into two areas. One
 is the options section for general settings and the
 other consists of zone entries for the individual
 domains. A logging section and
 acl (access control list) entries are optional.
 Comment lines begin with a # sign or
 //. A minimal /etc/named.conf is
 shown in Example 19.2, “A Basic /etc/named.conf”.

Example 19.2. A Basic /etc/named.conf
options {
 directory "/var/lib/named";
 forwarders { 10.0.0.1; };
 notify no;
};

zone "localhost" in {
 type master;
 file "localhost.zone";
};

zone "0.0.127.in-addr.arpa" in {
 type master;
 file "127.0.0.zone";
};

zone "." in {
 type hint;
 file "root.hint";
};

Important Configuration Options

	directory "FILENAME";
	
 Specifies the directory in which BIND can find the files containing the
 zone data. Usually, this is /var/lib/named.

	forwarders { IP-ADDRESS; };
	
 Specifies the name servers (mostly of the provider) to which DNS
 requests should be forwarded if they cannot be resolved directly.
 Replace IP-ADDRESS with an IP address like
 192.168.1.116.

	forward first;
	
 Causes DNS requests to be forwarded before an attempt is made to resolve
 them via the root name servers. Instead of forward
 first, forward only can be written
 to have all requests forwarded and none sent to the root name servers.
 This makes sense for firewall configurations.

	listen-on port 53 { 127.0.0.1; IP-ADDRESS; };
	
 Tells BIND on which network interfaces and port to accept client
 queries. port 53 does not need to be specified
 explicitly, because 53 is the default port. Enter
 127.0.0.1 to permit requests from the local host. If
 you omit this entry entirely, all interfaces are used by default.

	listen-on-v6 port 53 {any; };
	
 Tells BIND on which port it should listen for IPv6 client requests. The
 only alternative to any is none.
 As far as IPv6 is concerned, the server only accepts wild card
 addresses.

	query-source address * port 53;
	
 This entry is necessary if a firewall is blocking outgoing DNS requests.
 This tells BIND to post requests externally from port 53 and not from
 any of the high ports above 1024.

	query-source-v6 address * port 53;
	
 Tells BIND which port to use for IPv6 queries.

	allow-query { 127.0.0.1; NET; };
	
 Defines the networks from which clients can post DNS requests. Replace
 NET with address information like
 192.168.2.0/24. The /24 at
 the end is an abbreviated expression for the netmask (in this case
 255.255.255.0).

	allow-transfer ! *;;
	
 Controls which hosts can request zone transfers. In the example, such
 requests are completely denied with ! *.
 Without this entry, zone transfers can be requested from anywhere
 without restrictions.

	statistics-interval 0;
	
 In the absence of this entry, BIND generates several lines of
 statistical information per hour in the system's journal. Set it to 0 to
 suppress these statistics completely or set an interval in minutes.

	cleaning-interval 720;
	
 This option defines at which time intervals BIND clears its cache. This
 triggers an entry in the system's journal each time it occurs. The time
 specification is in minutes. The default is 60 minutes.

	interface-interval 0;
	
 BIND regularly searches the network interfaces for new or nonexistent
 interfaces. If this value is set to 0, this is
 not done and BIND only listens at the interfaces detected at start-up.
 Otherwise, the interval can be defined in minutes. The default is sixty
 minutes.

	notify no;
	no prevents other name servers from being informed when
 changes are made to the zone data or when the name server is restarted.

 For a list of available options, read the manual page man 5
 named.conf.

Logging

 What, how, and where logging takes place can be extensively configured in
 BIND. Normally, the default settings should be sufficient.
 Example 19.3, “Entry to Disable Logging”, shows the simplest form of such an entry and
 completely suppresses any logging.

Example 19.3. Entry to Disable Logging
logging {
 category default { null; };
};

Zone Entries

Example 19.4. Zone Entry for example.com
zone "example.com" in {
 type master;
 file "example.com.zone";
 notify no;
};

 After zone, specify the name of the domain to
 administer (example.com)
 followed by in and a block of relevant options
 enclosed in curly braces, as shown in Example 19.4, “Zone Entry for example.com”. To
 define a slave zone, switch the
 type to slave and specify a
 name server that administers this zone as master (which,
 in turn, may be a slave of another master), as shown in
 Example 19.5, “Zone Entry for example.net”.

Example 19.5. Zone Entry for example.net
zone "example.net" in {
 type slave;
 file "slave/example.net.zone";
 masters { 10.0.0.1; };
};

 The zone options:

	type master;
	
 By specifying master, tell BIND that the zone is
 handled by the local name server. This assumes that a zone file has been
 created in the correct format.

	type slave;
	
 This zone is transferred from another name server. It must be used
 together with masters.

	type hint;
	
 The zone . of the hint type is
 used to set the root name servers. This zone definition can be left as
 is.

	file example.com.zone or file
 “slave/example.net.zone”;
	
 This entry specifies the file where zone data for the domain is located.
 This file is not required for a slave, because this data is pulled from
 another name server. To differentiate master and slave files, use the
 directory slave for the slave files.

	masters { SERVER_IP_ADDRESS; };
	
 This entry is only needed for slave zones. It specifies from which name
 server the zone file should be transferred.

	allow-update {! *; };
	
 This option controls external write access, which would allow clients to
 make a DNS entry—something not normally desirable for security
 reasons. Without this entry, zone updates are not allowed. The above
 entry achieves the same because ! * effectively bans
 any such activity.

Remmina: the Remote Desktop Client

 Remmina is a modern and feature rich remote desktop client. It supports
 several access methods, for example VNC, SSH, RDP, and Spice.

Installation

 To use Remmina, verify whether the remmina package is
 installed on your system, and install it if not. Remember to install the
 VNC plug-in for Remmina as well:

root # zypper in remmina remmina-plugin-vnc

Main Window

 Run Remmina by entering the remmina command.

Figure 4.2. Remmina's Main Window
[image: Remmina's Main Window]

 The main application window shows the list of stored remote sessions. Here
 you can add and save a new remote session, quick-start a new session
 without saving it, start a previously saved session, or set Remmina's
 global preferences.

Adding Remote Sessions

 To add and save a new remote session, click [image: Add new session] in the
 top left of the main window. The
 Remote Desktop Preference window opens.

Figure 4.3. Remote Desktop Preference
[image: Remote Desktop Preference]

 Complete the fields that specify your newly added remote session profile.
 The most important are:

	Name
	
 Name of the profile. It will be listed in the main window.

	Protocol
	
 The protocol to use when connecting to the remote session, for example
 VNC.

	Server
	
 The IP or DNS address and display number of the remote server.

	User name, Password
	
 Credentials to use for remote authentication. Leave empty for no
 authentication.

	Color depth, Quality
	
 Select the best options according to your connection speed and quality.

 Select the Advanced tab to enter more specific settings.

Disable Encryption

 If the communication between the client and the remote server is not
 encrypted, activate Disable encryption, otherwise the
 connection fails.

 Select the SSH tab for advanced SSH tunneling and
 authentication options.

 Confirm with Save. Your new profile will be listed in
 the main window.

Starting Remote Sessions

 You can either start a previously saved session, or quick-start a remote
 session without saving the connection details.

Quick-starting Remote Sessions

 To start a remote session quickly without adding and saving connection
 details, use the drop-down box and text box at the top of the main window.

Figure 4.4. Quick-starting
[image: Quick-starting]

 Select the communication protocol from the drop-down box, for example
 'VNC', then enter the VNC server DNS or IP address followed by a colon and
 a display number, and confirm with Enter.

Opening Saved Remote Sessions

 To open a specific remote session, double-click it from the list of
 sessions.

Remote Sessions Window

 Remote sessions are opened in tabs of a separate window. Each tab hosts
 one session. The toolbar on the left of the window helps you manage the
 windows/sessions, such as toggle fullscreen mode, resize the window to
 match the display size of the session, send specific keystrokes to the
 session, take screenshots of the session, or set the image quality.

Figure 4.5. Remmina Viewing Remote Session
[image: Remmina Viewing Remote Session]

Editing, Copying, and Deleting Saved Sessions

 To edit a saved remote session, right-click its name
 in Remmina's main window and select Edit. Refer to
 Section “Adding Remote Sessions” for the description of the relevant
 fields.

 To copy a saved remote session, right-click its name
 in Remmina's main window and select Copy. In the
 Remote Desktop Preference window, change the name of the
 profile, optionally adjust relevant options, and confirm with
 Save.

 To Delete a saved remote session, right-click its name
 in Remmina's main window and select Delete. Confirm
 with Yes in the next dialog.

Running Remote Sessions from the Command Line

 If you need to open a remote session from the command line or from a batch
 file without first opening the main application window, use the following
 syntax:

tux > remmina -c profile_name.remmina

 Remmina's profile files are stored in the
 .local/share/remmina/ directory in your home
 directory. To determine which profile file belongs to the session you want
 to open, run Remmina, click the session name in the main window, and read
 the path to the profile file in the window's status line at the bottom.

Figure 4.6. Reading Path to the Profile File
[image: Reading Path to the Profile File]

 While Remmina is not running, you can rename the profile file to a more
 reasonable file name, such as sle15.remmina. You can
 even copy the profile file to your custom directory and run it using the
 remmina -c command from there.

Basic Usage

 The System V init system uses several commands to handle services—the
 init scripts, insserv, telinit and
 others. systemd makes it easier to manage services, since there is only one
 command to memorize for the majority of service-handling tasks:
 systemctl. It uses the “command plus
 subcommand” notation like git or
 zypper:

systemctl GENERAL OPTIONSSUBCOMMANDSUBCOMMAND OPTIONS

 See man 1 systemctl for a complete manual.

Terminal Output and Bash Completion

 If the output goes to a terminal (and not to a pipe or a file, for example)
 systemd commands send long output to a pager by default. Use the
 --no-pager option to turn off paging mode.

 systemd also supports bash-completion, allowing you to enter the first
 letters of a subcommand and then press →| to
 automatically complete it. This feature is only available in the
 bash shell and requires the installation of the
 package bash-completion.

Managing Services in a Running System

 Subcommands for managing services are the same as for managing a service
 with System V init (start, stop,
 ...). The general syntax for service management commands is as follows:

	systemd
	systemctl reload|restart|start|status|stop|...MY_SERVICE(S)

	System V init
	rcMY_SERVICE(S) reload|restart|start|status|stop|...

 systemd allows you to manage several services in one go. Instead of
 executing init scripts one after the other as with System V init, execute a
 command like the following:

tux > sudo systemctl start MY_1ST_SERVICEMY_2ND_SERVICE

 To list all services available on the system:

tux > sudo systemctl list-unit-files --type=service

 The following table lists the most important service management commands
 for systemd and System V init:

Table 10.1. Service Management Commands
	

 Task

 	

 systemd Command

 	

 System V init Command

	
 Starting.

 	
 start

 	
 start

	
 Stopping.

 	
 stop

 	
 stop

	
 Restarting.
 Shuts down services and starts them afterward. If a service is not
 yet running it will be started.

 	
 restart

 	
 restart

	
 Restarting conditionally.
 Restarts services if they are currently running. Does nothing for
 services that are not running.

 	
 try-restart

 	
 try-restart

	
 Reloading.
 Tells services to reload their configuration files without
 interrupting operation. Use case: Tell Apache to reload a modified
 httpd.conf configuration file. Note that not all
 services support reloading.

 	
 reload

 	
 reload

	
 Reloading or restarting.
 Reloads services if reloading is supported, otherwise restarts them.
 If a service is not yet running it will be started.

 	
 reload-or-restart

 	
 n/a

	
 Reloading or restarting conditionally.
 Reloads services if reloading is supported, otherwise restarts them
 if currently running. Does nothing for services that are not running.

 	
 reload-or-try-restart

 	
 n/a

	
 Getting detailed status information.
 Lists information about the status of services. The systemd command
 shows details such as description, executable, status, cgroup, and
 messages last issued by a service (see
 Section “Debugging Services”). The
 level of details displayed with the System V init differs from
 service to service.

 	
 status

 	
 status

	
 Getting short status information.
 Shows whether services are active or not.

 	
 is-active

 	
 status

Permanently Enabling/Disabling Services

 The service management commands mentioned in the previous section let you
 manipulate services for the current session. systemd also lets you
 permanently enable or disable services, so they are automatically started
 when requested or are always unavailable. You can either do this by using
 YaST, or on the command line.

Enabling/Disabling Services on the Command Line

 The following table lists enabling and disabling commands for systemd and
 System V init:

Service Start

 When enabling a service on the command line, it is not started
 automatically. It is scheduled to be started with the next system
 start-up or runlevel/target change. To immediately start a service after
 having enabled it, explicitly run systemctl start
 MY_SERVICE or rc
 MY_SERVICE start.

Table 10.2. Commands for Enabling and Disabling Services
	

 Task

 	
 systemd Command

 	

 System V init Command

	
 Enabling.

 	

 systemctl enable
 MY_SERVICE(S)

 	
 insserv MY_SERVICE(S),
 chkconfig -a
 MY_SERVICE(S)

	
 Disabling.

 	

 systemctl disable
 MY_SERVICE(S).service

 	
 insserv -r
 MY_SERVICE(S),
 chkconfig -d
 MY_SERVICE(S)

	
 Checking.
 Shows whether a service is enabled or not.

 	

 systemctl is-enabled
 MY_SERVICE

 	

 chkconfig MY_SERVICE

	
 Re-enabling.
 Similar to restarting a service, this command first disables and
 then enables a service. Useful to re-enable a service with its
 defaults.

 	

 systemctl reenable
 MY_SERVICE

 	

 n/a

	
 Masking.
 After “disabling” a service, it can still be started
 manually. To completely disable a service, you need to mask it. Use
 with care.

 	

 systemctl mask
 MY_SERVICE

 	

 n/a

	
 Unmasking.
 A service that has been masked can only be used again after it has
 been unmasked.

 	

 systemctl unmask
 MY_SERVICE

 	

 n/a

Part IV. Mobile Computers

DHCP Software Packages

 Both the DHCP server and the DHCP clients are available for
 openSUSE Leap. The DHCP server available is dhcpd (published by the Internet Systems
 Consortium).

 On the client side, there is dhcp-client (also from
 ISC) and tools coming with the wicked package.

 By default, the wicked tools are installed with the
 services wickedd-dhcp4 and
 wickedd-dhcp6. Both are launched automatically on
 each system boot to watch for a DHCP server. They do not need a
 configuration file to do their job and work out of the box in most standard
 setups. For more complex situations, use the ISC
 dhcp-client, which is controlled by means of the
 configuration files /etc/dhclient.conf and
 /etc/dhclient6.conf.

Chapter 5. Expert Partitioner

 Sophisticated system configurations require specific disk setups. All common
 partitioning tasks can be done during the installation. To get persistent
 device naming with block devices, use the block devices below
 /dev/disk/by-id or
 /dev/disk/by-uuid. Logical Volume Management (LVM) is a
 disk partitioning scheme that is designed to be much more flexible than the
 physical partitioning used in standard setups. Its snapshot functionality
 enables easy creation of data backups. Redundant Array of Independent Disks
 (RAID) offers increased data integrity, performance, and fault tolerance.
 openSUSE Leap also supports multipath I/O . There is also the
 option to use iSCSI as a networked disk.

Disk Space Units

 Note that for partitioning purposes, disk space is measured in binary
 units, rather than in decimal units. For example, if you enter sizes of
 1GB, 1GiB or 1G,
 they all signify 1 GiB (Gibibyte), as opposed to 1 GB (Gigabyte).

	Binary
	
 1 GiB = 1 073 741 824 bytes.

	
 Decimal

	
 1 GB = 1 000 000 000 bytes.

	
 Difference

	
 1 GiB ≈ 1.07 GB.

Using the Expert Partitioner

 With the Expert Partitioner, shown in
 Figure 5.1, “The YaST Partitioner”, manually modify the partitioning
 of one or several hard disks. You can add, delete, resize, and edit
 partitions, or access the soft RAID, and LVM configuration.

Repartitioning the Running System

 Although it is possible to repartition your system while it is running, the
 risk of making a mistake that causes data loss is very high. Try to avoid
 repartitioning your installed system and always create a complete backup of your
 data before attempting to do so.

Figure 5.1. The YaST Partitioner
[image: The YaST Partitioner]

 All existing or suggested partitions on all connected hard disks are
 displayed in the list of Available Storage in the YaST
 Expert Partitioner dialog. Entire hard disks are listed as
 devices without numbers, such as
 /dev/sda. Partitions are listed as parts of
 these devices, such as
 /dev/sda1. The size, type,
 encryption status, file system, and mount point of the hard disks and their
 partitions are also displayed. The mount point describes where the partition
 appears in the Linux file system tree.

 Several functional views are available on the left hand System
 View. These views can be used to collect information about
 existing storage configurations, configure functions (like
 RAID, Volume Management,
 Crypt Files), and view file systems with additional
 features, such as Btrfs, NFS, or TMPFS.

 If you run the expert dialog during installation, any free hard disk
 space is also listed and automatically selected. To provide more disk
 space to openSUSE Leap, free the needed space by going from the
 bottom toward the top in the list of partitions.

Partition Tables

openSUSE Leap allows to use and create different partition
 tables. In some cases the partition table is called
 disk label. The partition table is important to
 the boot process of your computer. To boot your machine
 from a partition in a newly created partition table, make sure that
 the table format is supported by the firmware.

 To change the partition table, click the relevant disk name in the
 System View and choose
 Expert+Create New Partition
 Table.

Master Boot Record

 The master boot record (MBR) is the legacy
 partition table used on IBM PCs. It is sometimes also called an
 MS-DOS partition table. The MBR only supports
 four primary partitions. If the disk already has an MBR, openSUSE Leap
 allows you to create additional partitions in it which can be used
 as the installation target.

 The limit of four partitions can be overcome by creating an
 extended partition. The extended partition
 itself is a primary partition and can contain more
 logical partitions.

 UEFI firmware usually supports booting from MBR in the legacy mode.

GPT Partition Table

 UEFI computers use a GUID Partition Table (GPT)
 by default. openSUSE Leap will create a GPT on a disk if no other
 partition table exists.

 Old BIOS firmware does not support booting from GPT partitions.

 You need a GPT partition table to use one of the following features:

	More than four primary partitions

	
 UEFI Secure Boot

	
 Use disks larger than 2 TB

Partitions Created with Parted 3.1 or Earlier Mislabeled

 GPT partitions created with Parted 3.1 or earlier used the Microsoft
 Basic Data partition type instead of the newer Linux-specific GPT GUID.
 Newer versions of Parted will set the misleading flag
 msftdata on such partitions. This will also lead to
 various disk tools labeling the partition as a Windows Data
 Partition or similar.

 To remove the flag, run:

root # parted DEVICE set PARTITION_NUMBER msftdata off

Partitions

 The YaST Partitioner can create and format partitions with several
 file systems. The default file system used by openSUSE Leap is
 Btrfs. For details, see
 Section “Btrfs Partitioning”.

 Other commonly used file systems are available:
 Ext2, Ext3,
 Ext4, FAT,
 XFS, Swap, and UDF.

Creating a Partition

 To create a partition select Hard Disks and
 then a hard disk with free space. The actual modification can be done in the
 Partitions tab:

	
 Click Add to create a new partition. When using
 MBR, specify to create a primary
 or extended partition. Within the extended partition, you can
 create several logical partitions. For details, see
 Section “Partition Tables”.

	
 Specify the size of the new partition. You can either choose to occupy all
 the free unpartitioned space, or enter a custom size.

	
 Select the file system to use and a mount point. YaST suggests a mount
 point for each partition created. To use a different mount method, like
 mount by label, select Fstab Options.

	
 Specify additional file system options if your setup requires them. This
 is necessary, for example, if you need persistent device names. For
 details on the available options, refer to
 Section “Editing a Partition”.

	
 Click Finish to apply your partitioning setup and leave
 the partitioning module.

 If you created the partition during installation, you are returned to the
 installation overview screen.

Btrfs Partitioning

 The default file system for the root partition is Btrfs. For details, see
 Chapter 3, System Recovery and Snapshot Management with Snapper.
 The root file system is the default subvolume and it is not listed in the
 list of created subvolumes. As a default Btrfs subvolume, it can be mounted
 as a normal file system.

Btrfs on an Encrypted Root Partition

 The default partitioning setup suggests the root partition as
 Btrfs with /boot being a directory. To
 encrypt the root partition, make sure to use the GPT partition
 table type instead of the default MSDOS type. Otherwise the GRUB2
 boot loader may not have enough space for the second stage loader.

 It is possible to create snapshots of Btrfs subvolumes—either
 manually, or automatically based on system events. For example when
 making changes to the file system, zypper
 invokes the snapper command to create snapshots
 before and after the change. This is useful if you are not
 satisfied with the change zypper made and want
 to restore the previous state. As snapper
 invoked by zypper creates snapshots of the
 root file system by default, it makes sense to
 exclude specific directories from snapshots. This is the reason
 YaST suggests creating the following separate subvolumes:

	/boot/grub2/i386-pc,
 /boot/grub2/x86_64-efi,
 /boot/grub2/powerpc-ieee1275,
 /boot/grub2/s390x-emu
	
 A rollback of the boot loader configuration is not supported. The
 directories listed above are architecture-specific. The first two
 directories are present on AMD64/Intel 64 machines, the latter two on IBM
 POWER and on IBM Z, respectively.

	
 /home

	
 If /home does not reside on a separate partition, it
 is excluded to avoid data loss on rollbacks.

	
 /opt

	
 Third-party products usually get installed to /opt. It
 is excluded to avoid uninstalling these applications on rollbacks.

	
 /srv

	
 Contains data for Web and FTP servers. It is excluded to avoid data loss on
 rollbacks.

	
 /tmp

	
 All directories containing temporary files and caches are excluded from
 snapshots.

	
 /usr/local

	
 This directory is used when manually installing software. It is excluded to
 avoid uninstalling these installations on rollbacks.

	
 /var

	
 This directory contains many variable files, including logs, temporary
 caches, third party products in /var/opt, and is the
 default location for virtual machine images and databases. Therefore this
 subvolume is created to exclude all of this variable data from snapshots
 and has Copy-On-Write disabled.

Size of Btrfs Partition

 Since saved snapshots require more disk space, it is recommended to
 reserve enough space for Btrfs. While the minimum size for a root Btrfs
 partition with snapshots and default subvolumes is 16 GB, SUSE
 recommends at least 32 GB, or more if /home
 does not reside on a separate partition.

Managing Btrfs Subvolumes using YaST

 Subvolumes of a Btrfs partition can be now managed with the YaST
 Expert partitioner module. You can add new or remove
 existing subvolumes.

Procedure 5.1. Btrfs Subvolumes with YaST
	
 Start the YaST Expert Partitioner with
 System+Partitioner.

	
 Choose Btrfs in the left System
 View pane.

	
 Select the Btrfs partition whose subvolumes you need to manage and click
 Edit.

	
 Click Subvolume Handling. You can see a list of all
 existing subvolumes of the selected Btrfs partition. There are
 several @/.snapshots/xyz/snapshot entries—each
 of these subvolumes belongs to one existing snapshot.

	
 Depending on whether you want to add or remove subvolumes, do the
 following:

	
 To remove a subvolume, select it from the list of Exisitng
 Subvolumes and click Remove.

	
 To add a new subvolume, enter its name to the New
 Subvolume text box and click Add new.

Figure 5.2. Btrfs Subvolumes in YaST Partitioner
[image: Btrfs Subvolumes in YaST Partitioner]

	
 Confirm with OK and Finish.

	
 Leave the partitioner with Finish.

Editing a Partition

 When you create a new partition or modify an existing partition, you can set
 various parameters. For new partitions, the default parameters set by YaST
 are usually sufficient and do not require any modification. To edit your
 partition setup manually, proceed as follows:

	
 Select the partition.

	
 Click Edit to edit the partition and set the
 parameters:

	File System ID
	
 Even if you do not want to format the partition at this
 stage, assign it a file system ID to ensure that the partition is
 registered correctly. Typical values are Linux,
 Linux swap, Linux LVM, and
 Linux RAID.

	
 File System

	
 To change the partition file system, click Format
 Partition and select file system type in the File
 System list.

openSUSE Leap supports several types of file systems. Btrfs is the
 Linux file system of choice for the root partition because of its
 advanced features. It supports copy-on-write functionality, creating
 snapshots, multi-device spanning, subvolumes, and other useful
 techniques. XFS, Ext3, and Ext4 are journaling file systems. These file
 systems can restore the system very quickly after a system crash, using
 write processes logged during the operation. Ext2 is not a journaling
 file system, but it is adequate for smaller partitions because it does
 not require much disk space for management.

 The default file system for the root partition is Btrfs. The default
 file system for additional partitions is XFS.

 The UDF file system can be used on optical rewritable and non-rewritable
 media, USB flash drives and hard disks. It is supported by multiple
 operating systems.

 Swap is a special format that allows the partition to be used as a
 virtual memory. Create a swap partition of at least 256 MB.
 However, if you use up your swap space, consider adding memory to
 your system instead of adding swap space.

Changing the File System

 Changing the file system and reformatting partitions irreversibly
 deletes all data from the partition.

 For details on the various file systems, refer to Storage Administration Guide.

	
 Encrypt Device

	
 If you activate the encryption, all data is written to the hard disk in
 encrypted form. This increases the security of sensitive data, but
 reduces the system speed, as the encryption takes some time to process.
 More information about the encryption of file systems is provided in
 “Encrypting Partitions and Files” (↑Security and Hardening Guide).

	
 Mount Point

	
 Specify the directory where the partition should be mounted in the file
 system tree. Select from YaST suggestions or enter any other name.

	
 Fstab Options

	
 Specify various parameters contained in the global file system
 administration file (/etc/fstab). The default
 settings should suffice for most setups. You can, for example, change
 the file system identification from the device name to a volume label.
 In the volume label, use all characters except / and
 space.

 To get persistent devices names, use the mount option Device
 ID, UUID or LABEL. In
 openSUSE Leap, persistent device names are enabled by default.

 If you prefer to mount the partition by its label, you need to define
 one in the Volume label text entry. For example, you
 could use the partition label HOME for a partition
 intended to mount to /home.

 If you intend to use quotas on the file system, use the mount option
 Enable Quota Support. This must be done before you
 can define quotas for users in the YaST User
 Management module. For further information on how to
 configure user quota, refer to
 “Managing Quotas” (Section “Managing Users with YaST”, ↑Start-Up).

	
 Select Finish to save the changes.

Resize File Systems

 To resize an existing file system, select the partition and use
 Resize. Note, that it is not possible to resize
 partitions while mounted. To resize partitions, unmount the relevant
 partition before running the partitioner.

Expert Options

 After you select a hard disk device (like sda) in the
 System View pane, you can access the
 Expert menu in the lower right part of the
 Expert Partitioner window. The menu contains the
 following commands:

	Create New Partition Table
	
 This option helps you create a new partition table on the selected
 device.

Creating a New Partition Table

 Creating a new partition table on a device irreversibly removes all the
 partitions and their data from that device.

	Clone This Disk
	
 This option helps you clone the device partition layout (but not the
 data) to other available disk devices.

Advanced Options

 After you select the host name of the computer (the top-level of the tree in
 the System View pane), you can access the
 Configure menu in the lower right part of the
 Expert Partitioner window. The menu contains the
 following commands:

	Configure iSCSI
	
 To access SCSI over IP block devices, you first need to configure iSCSI.
 This results in additionally available devices in the main partition
 list.

	Configure Multipath
	
 Selecting this option helps you configure the multipath enhancement to
 the supported mass storage devices.

More Partitioning Tips

 The following section includes a few hints and tips on partitioning that
 should help you make the right decisions when setting up your system.

Cylinder Numbers

 Note, that different partitioning tools may start counting the cylinders of
 a partition with 0 or with 1. When
 calculating the number of cylinders, you should always use the difference
 between the last and the first cylinder number and add one.

Using swap

 Swap is used to extend the available physical memory. It is then possible
 to use more memory than physical RAM available. The memory management
 system of kernels before 2.4.10 needed swap as a safety measure. Then, if
 you did not have twice the size of your RAM in swap, the performance of the
 system suffered. These limitations no longer exist.

 Linux uses a page called “Least Recently Used” (LRU) to select
 pages that might be moved from memory to disk. Therefore, running
 applications have more memory available and caching works more smoothly.

 If an application tries to allocate the maximum allowed memory, problems
 with swap can arise. There are three major scenarios to look at:

	System with no swap
	
 The application gets the maximum allowed memory. All caches are freed,
 and thus all other running applications are slowed. After a few minutes,
 the kernel's out-of-memory kill mechanism activates and kills the
 process.

	System with medium sized swap (128 MB–512 MB)
	
 At first, the system slows like a system without swap. After all
 physical RAM has been allocated, swap space is used as well. At this
 point, the system becomes very slow and it becomes impossible to run
 commands from remote. Depending on the speed of the hard disks that run
 the swap space, the system stays in this condition for about 10 to 15
 minutes until the out-of-memory kill mechanism resolves the issue. Note
 that you will need a certain amount of swap if the computer needs to
 perform a “suspend to disk”. In that case, the swap size
 should be large enough to contain the necessary data from memory (512
 MB–1GB).

	System with lots of swap (several GB)
	
 It is better to not have an application that is out of control and
 swapping excessively in this case. If you use such application, the
 system will need many hours to recover. In the process, it is likely
 that other processes get timeouts and faults, leaving the system in an
 undefined state, even after terminating the faulty process. In this
 case, do a hard machine reboot and try to get it running again. Lots of
 swap is only useful if you have an application that relies on this
 feature. Such applications (like databases or graphics manipulation
 programs) often have an option to directly use hard disk space for their
 needs. It is advisable to use this option instead of using lots of swap
 space.

 If your system is not out of control, but needs more swap after some time,
 it is possible to extend the swap space online. If you prepared a partition
 for swap space, add this partition with YaST. If you do not have a
 partition available, you can also use a swap file to extend the swap. Swap
 files are generally slower than partitions, but compared to physical RAM,
 both are extremely slow so the actual difference is negligible.

Procedure 5.2. Adding a Swap File Manually

 To add a swap file in the running system, proceed as follows:

	
 Create an empty file in your system. For example, to add a
 swap file with 128 MB swap at
 /var/lib/swap/swapfile, use the commands:

tux > sudo mkdir -p /var/lib/swap
tux > sudo dd if=/dev/zero of=/var/lib/swap/swapfile bs=1M count=128

	
 Initialize this swap file with the command

tux > sudo mkswap /var/lib/swap/swapfile
Changed UUID for Swap Partitions When Formatting via mkswap
Do not reformat existing swap partitions with mkswap
 if possible. Reformatting with mkswap will change
 the UUID value of the swap partition. Either reformat via YaST (which
 will update /etc/fstab) or adjust
 /etc/fstab manually.

	
 Activate the swap with the command

tux > sudo swapon /var/lib/swap/swapfile

 To disable this swap file, use the command

tux > sudo swapoff /var/lib/swap/swapfile

	
 Check the current available swap spaces with the command

tux > cat /proc/swaps

 Note that at this point, it is only temporary swap space. After the next
 reboot, it is no longer used.

	
 To enable this swap file permanently, add the following line to
 /etc/fstab:

/var/lib/swap/swapfile swap swap defaults 0 0

Partitioning and LVM

 From the Expert partitioner, access the LVM configuration
 by clicking the Volume Management item in the
 System View pane. However, if a working LVM configuration
 already exists on your system, it is automatically activated upon entering
 the initial LVM configuration of a session. In this case, all disks
 containing a partition (belonging to an activated volume group) cannot be
 repartitioned. The Linux kernel cannot reread the modified partition table
 of a hard disk when any partition on this disk is in use. If you already
 have a working LVM configuration on your system, physical repartitioning
 should not be necessary. Instead, change the configuration of the logical
 volumes.

 At the beginning of the physical volumes (PVs), information about the volume
 is written to the partition. To reuse such a partition for other non-LVM
 purposes, it is advisable to delete the beginning of this volume. For
 example, in the VG system and PV
 /dev/sda2, do this with the command:

 dd
 if=/dev/zero of=/dev/sda2 bs=512 count=1

File System for Booting

 The file system used for booting (the root file system or
 /boot) must not be stored on an LVM logical volume.
 Instead, store it on a normal physical partition.

Part I. Advanced Administration

For More Information

 For more information about the udev
 infrastructure, refer to the following man pages:

	
 udev

	
 General information about udev,
 keys, rules and other important configuration issues.

	
 udevadm

	udevadm can be used to control the runtime behavior of
 udev, request kernel events,
 manage the event queue and provide simple debugging mechanisms.

	
 udevd

	
 Information about the udev event
 managing daemon.

About This Guide

 This manual gives you a general understanding of openSUSE® Leap. It is
 intended mainly for system administrators and home users with basic system
 administration knowledge. Check out the various parts of this manual for a
 selection of applications needed in everyday life and in-depth
 descriptions of advanced installation and configuration scenarios.

	Advanced Administration
	
 Learn about advanced adminstrations tasks such as using YaST in text
 mode and managing software from the command line. Find out how to do
 system rollbacks with Snapper and how to use advanced storage techniques
 on openSUSE Leap.

	System
	
 Get an introduction to the components of your Linux system and a deeper
 understanding of their interaction.

	Services
	
 Learn how to configure the various network and file services that come
 with openSUSE Leap.

	Mobile Computers
	
 Get an introduction to mobile computing with openSUSE Leap, get to know
 the various options for wireless computing and power management.

Available Documentation

Online Documentation and Latest Updates

 Documentation for our products is available at
 http://doc.opensuse.org/,
 where you can also find the latest updates, and browse or download the documentation in various formats.
 The latest documentation updates are usually available in the English version of the documentation.

 The following documentation is available for this product:

	
 ↑“Start-Up”

	
 This manual will see you through your
 initial contact with openSUSE® Leap. Check out the various parts of this manual to learn how to install, use and enjoy your system.

	

 Reference

	
 Covers system administration tasks like maintaining,
 monitoring and customizing an initially installed system.

	
 ↑“Virtualization Guide”

	
 Describes virtualization technology in
 general, and introduces libvirt—the unified interface to
 virtualization—and detailed information on specific
 hypervisors.

	
 ↑“AutoYaST Guide”

	
 AutoYaST is a system for unattended mass deployment
 of openSUSE Leap systems using an AutoYaST profile containing installation
 and configuration data. The manual guides you through the basic steps of
 auto-installation: preparation, installation, and configuration.

	
 ↑“Security and Hardening Guide”

	
 Introduces basic concepts of system security,
 covering both local and network security aspects. Shows how to use
 the product inherent security software like AppArmor, SELinux, or the auditing system
 that reliably collects information about any security-relevant
 events. Supports the administrator with security-related choices
 and decisions in installing and setting up a secure SUSE Linux Enterprise Server and additional processes
 to further secure and harden that installation.

	
 ↑“System Analysis and Tuning Guide”

	
 An administrator's guide for problem detection,
 resolution and optimization. Find how to inspect and optimize your system
 by means of monitoring tools and how to efficiently manage
 resources. Also contains an overview of common problems and solutions and
 of additional help and documentation resources.

	
 ↑“GNOME User Guide”

	
 Introduces the GNOME desktop of openSUSE Leap. It
 guides you through using and configuring the desktop and helps you
 perform key tasks. It is intended mainly for end users who want to make
 efficient use of GNOME as their default desktop.

 The release notes for this product are available at
 https://www.suse.com/releasenotes/.

Files used by udev

	
 /sys/*

	
 Virtual file system provided by the Linux kernel, exporting all currently
 known devices. This information is used by
 udev to create device nodes in
 /dev

	
 /dev/*

	
 Dynamically created device nodes and static content created with
 systemd-tmpfiles; for more information, see the
 systemd-tmpfiles(8) man page.

 The following files and directories contain the crucial elements of the
 udev infrastructure:

	
 /etc/udev/udev.conf

	
 Main udev configuration file.

	
 /etc/udev/rules.d/*

	
 System-specific udev event
 matching rules. You can add custom rules here to modify or override
 the default rules from /usr/lib/udev/rules.d/*.

 Files are parsed in alphanumeric order. Rules from files with a higher
 priority modify or override rules with lower priority. The lower the
 number, the higher the priority.

	
 /usr/lib/udev/rules.d/*

	
 Default udev event matching
 rules. The files in this directory are owned by packages and will be
 overwritten by updates. Do not add, remove or edit files here, use
 /etc/udev/rules.d instead.

	
 /usr/lib/udev/*

	
 Helper programs called from udev
 rules.

	/usr/lib/tmpfiles.d/ and
 /etc/tmpfiles.d/
	
 Responsible for static /dev content.

Manually Creating and Managing Snapshots

 Snapper is not restricted to creating and managing snapshots automatically
 by configuration; you can also create snapshot pairs (“before and
 after”) or single snapshots manually using either the command-line
 tool or the YaST module.

 All Snapper operations are carried out for an existing configuration (see
 Section “Creating and Modifying Snapper Configurations” for details). You can only take
 snapshots of partitions or volumes for which a configuration exists. By
 default the system configuration (root) is used.
 To create or manage snapshots for your own configuration you need to
 explicitly choose it. Use the Current Configuration
 drop-down box in YaST or specify the -c on the command
 line (snapper -c MYCONFIGCOMMAND).

Snapshot Metadata

 Each snapshot consists of the snapshot itself and some metadata. When
 creating a snapshot you also need to specify the metadata. Modifying a
 snapshot means changing its metadata—you cannot modify its content.
 Use snapper list to show existing snapshots and their
 metadata:

	
 snapper --config home list

	
 Lists snapshots for the configuration home. To list
 snapshots for the default configuration (root), use snapper -c
 root list or snapper list.

	
 snapper list -a

	
 Lists snapshots for all existing configurations.

	
 snapper list -t pre-post

	
 Lists all pre and post snapshot pairs for the default
 (root) configuration.

	
 snapper list -t single

	
 Lists all snapshots of the type single for the
 default (root) configuration.

 The following metadata is available for each snapshot:

	Type: Snapshot type, see
 Section “Snapshot Types” for details. This data
 cannot be changed.

	Number: Unique number of the snapshot.
 This data cannot be changed.

	Pre Number: Specifies the number of the
 corresponding pre snapshot. For snapshots of type post only. This data
 cannot be changed.

	Description: A description of the
 snapshot.

	Userdata: An extended description where
 you can specify custom data in the form of a comma-separated key=value
 list: reason=testing, project=foo. This field is also
 used to mark a snapshot as important (important=yes)
 and to list the user that created the snapshot
 (user=tux).

	Cleanup-Algorithm: Cleanup-algorithm for
 the snapshot, see Section “Automatic Snapshot Clean-Up” for details.

Snapshot Types

 Snapper knows three different types of snapshots: pre, post, and single.
 Physically they do not differ, but Snapper handles them differently.

	
 pre

	
 Snapshot of a file system before a modification.
 Each pre snapshot corresponds to a
 post snapshot.
 For example, this is used for the automatic YaST/Zypper snapshots.

	
 post

	
 Snapshot of a file system after a modification.
 Each post snapshot corresponds to a
 pre snapshot.
 For example, this is used for the automatic YaST/Zypper snapshots.

	
 single

	
 Stand-alone snapshot.
 For example, this is used for the automatic hourly snapshots.
 This is the default type when creating snapshots.

Cleanup Algorithms

 Snapper provides three algorithms to clean up old snapshots. The
 algorithms are executed in a daily
 cron job.
 It is possible to define the
 number of different types of snapshots to keep in the Snapper
 configuration (see Section “Managing Existing Configurations” for
 details).

	number
	
 Deletes old snapshots when a certain snapshot count is reached.

	timeline
	
 Deletes old snapshots having passed a certain age, but keeps several
 hourly, daily, monthly, and yearly snapshots.

	empty-pre-post
	
 Deletes pre/post snapshot pairs with empty diffs.

Creating Snapshots

 To create a snapshot, run snapper create or
 click Create in the YaST module
 Snapper. The following examples explain how to create
 snapshots from the command line.
 The YaST interface for Snapper is not explicitly described here but
 provides equivalent functionality.

Snapshot Description

 Always specify a meaningful description to later be able to
 identify its purpose. You can also specify additional information via
 the option --userdata.

	
 snapper create --from 17 --description
 "with package2"

	
 Creates a stand-alone snapshot (type single) from an existing snapshot, which is specified
 by the snapshot's number from snapper list. (This applies to Snapper version
 0.8.4 and newer.)

	
 snapper create --description "Snapshot for week 2
 2014"

	
 Creates a stand-alone snapshot (type single) for the default
 (root) configuration with a description. Because no
 cleanup-algorithm is specified, the snapshot will never be deleted
 automatically.

	
 snapper --config home create --description "Cleanup in
 ~tux"

	
 Creates a stand-alone snapshot (type single) for a custom configuration
 named home with a description. Because no
 cleanup-algorithm is specified, the snapshot will never be deleted
 automatically.

	snapper --config home create --description "Daily data
 backup" --cleanup-algorithm timeline>

	
 Creates a stand-alone snapshot (type single) for a custom configuration
 named home with a description. The snapshot will
 automatically be deleted when it meets the criteria specified for the
 timeline cleanup-algorithm in the configuration.

	
 snapper create --type pre --print-number --description
 "Before the Apache config cleanup" --userdata "important=yes"

	
 Creates a snapshot of the type pre and prints the
 snapshot number. First command needed to create a pair of snapshots used
 to save a “before” and “after” state. The
 snapshot is marked as important.

	
 snapper create --type post --pre-number 30 --description
 "After the Apache config cleanup" --userdata "important=yes"

	
 Creates a snapshot of the type post paired with the
 pre snapshot number 30. Second
 command needed to create a pair of snapshots used to save a
 “before” and “after” state. The snapshot is
 marked as important.

	
 snapper create --command COMMAND
 --description "Before and after COMMAND"

	
 Automatically creates a snapshot pair before and after running
 COMMAND. This option is only available when
 using snapper on the command line.

Modifying Snapshot Metadata

 Snapper allows you to modify the description, the cleanup algorithm, and
 the user data of a snapshot. All other metadata cannot be changed. The
 following examples explain how to modify snapshots from the command line.
 It should be easy to adopt them when using the YaST interface.

 To modify a snapshot on the command line, you need to know its number. Use
 snapper list to display all snapshots
 and their numbers.

 The YaST Snapper module already lists all snapshots.
 Choose one from the list and click Modify.

	snapper modify --cleanup-algorithm "timeline"
 10

	
 Modifies the metadata of snapshot 10 for the default
 (root) configuration. The cleanup algorithm is set to
 timeline.

	
 snapper --config home modify --description "daily backup"
 -cleanup-algorithm "timeline" 120

	
 Modifies the metadata of snapshot 120 for a custom configuration named
 home. A new description is set and the cleanup
 algorithm is unset.

Deleting Snapshots

 To delete a snapshot with the YaST Snapper module,
 choose a snapshot from the list and click Delete.

 To delete a snapshot with the command-line tool, you need to know its
 number. Get it by running snapper list. To delete a
 snapshot, run snapper deleteNUMBER.

 Deleting the current default subvolume snapshot is not allowed.

 When deleting snapshots with Snapper, the freed space will be claimed by a
 Btrfs process running in the background. Thus the visibility and the
 availability of free space is delayed. In case you need space freed by
 deleting a snapshot to be available immediately, use the option
 --sync with the delete command.

Deleting Snapshot Pairs

 When deleting a pre snapshot, you should always delete
 its corresponding post snapshot (and vice versa).

	
 snapper delete 65

	
 Deletes snapshot 65 for the default (root)
 configuration.

	
 snapper -c home delete 89 90

	
 Deletes snapshots 89 and 90 for a custom configuration named
 home.

	
 snapper delete --sync 23

	
 Deletes snapshot 23 for the default (root)
 configuration and makes the freed space available immediately.

Delete Unreferenced Snapshots

 Sometimes the Btrfs snapshot is present but the XML file containing the
 metadata for Snapper is missing. In this case the snapshot is not visible
 for Snapper and needs to be deleted manually:

btrfs subvolume delete /.snapshots/SNAPSHOTNUMBER/snapshot
rm -rf /.snapshots/SNAPSHOTNUMBER

Old Snapshots Occupy More Disk Space

 If you delete snapshots to free space on your hard disk, make sure to
 delete old snapshots first. The older a snapshot is, the more disk space
 it occupies.

 Snapshots are also automatically deleted by a daily cron job. Refer to
 Section “Cleanup Algorithms” for details.

Configuring a Samba Server

 A Samba server in openSUSE® Leap can be configured in two different ways:
 with YaST or manually. Manual configuration offers a higher level of
 detail, but lacks the convenience of the YaST GUI.

Configuring a Samba Server with YaST

 To configure a Samba server, start YaST and select
 Network Services+Samba
 Server.

Initial Samba Configuration

 When starting the module for the first time, the Samba
 Installation dialog starts, prompting you to make a few basic
 decisions concerning administration of the server. At the end of the
 configuration, it prompts for the Samba administrator password
 (Samba Root Password). For later starts, the
 Samba Configuration dialog appears.

 The Samba Installation dialog consists of two steps and
 optional detailed settings:

	Workgroup or Domain Name
	
 Select an existing name from Workgroup or Domain
 Name or enter a new one and click Next.

	Samba Server Type
	
 In the next step, specify whether your server should act as a primary
 domain controller (PDC), backup domain controller (BDC), or not act
 as a domain controller. Continue with Next.

 If you do not want to proceed with a detailed server configuration,
 confirm with OK. Then in the final pop-up box, set the
 Samba root Password.

 You can change all settings later in the Samba
 Configuration dialog with the Start-Up,
 Shares, Identity, Trusted
 Domains, and LDAP Settings tabs.

Enabling Current Versions of the SMB Protocol on the Server

 On clients running current versions of openSUSE Leap or other recent Linux
 versions, the insecure SMB1/CIFS protocol is disabled by default. However,
 existing instances of Samba may be configured to only serve shares using
 the SMB1/CIFS version of the protocol.
 To interact with such clients, you need to configure Samba
 to serve shares using at least the SMB 2.1 protocol.

 There are setups in which only SMB1 can be used, for example, because they
 rely on SMB1's/CIFS's Unix extensions. These extensions have not been
 ported to newer protocol versions. If you are in this situation, consider
 changing your setup or see Section “Mounting SMB1/CIFS Shares on Clients”.

 To do so, in the configuration file
 /etc/samba/smb.conf, set the global parameter
 server max protocol = SMB2_10. For a list of all
 possible values, see man smb.conf.

Advanced Samba Configuration

 During the first start of the Samba server module the Samba
 Configuration dialog appears directly after the two initial
 steps described in Section “Initial Samba Configuration”. Use it to
 adjust your Samba server configuration.

 After editing your configuration, click OK to save your
 settings.

Starting the Server

 In the Start Up tab, configure the start of the Samba
 server. To start the service every time your system boots, select
 During Boot. To activate manual start, choose
 Manually. More information about starting a Samba
 server is provided in Section “Starting and Stopping Samba”.

 In this tab, you can also open ports in your firewall. To do so, select
 Open Port in Firewall. If you have multiple network
 interfaces, select the network interface for Samba services by clicking
 Firewall Details, selecting the interfaces, and
 clicking OK.

Shares

 In the Shares tab, determine the Samba shares to
 activate. There are some predefined shares, like homes and printers. Use
 Toggle Status to switch between
 Active and Inactive. Click
 Add to add new shares and Delete to
 delete the selected share.

Allow Users to Share Their Directories enables members
 of the group in Permitted Group to share directories
 they own with other users. For example, users
 for a local scope or DOMAIN\Users for a domain
 scope. The user also must make sure that the file system permissions
 allow access. With Maximum Number of Shares, limit the
 total amount of shares that may be created. To permit access to user
 shares without authentication, enable Allow Guest
 Access.

Identity

 In the Identity tab, you can determine the domain with
 which the host is associated (Base Settings) and
 whether to use an alternative host name in the network (NetBIOS
 Hostname).

 It is also possible to use Microsoft Windows Internet Name Service (WINS)
 for name resolution. In this case, activate Use WINS for
 Hostname Resolution and decide whether to Retrieve
 WINS server via DHCP. To set expert global settings or set a
 user authentication source, for example LDAP
 instead of TDB database, click Advanced
 Settings.

Trusted Domains

 To enable users from other domains to access your domain, make the
 appropriate settings in the Trusted Domains tab. To
 add a new domain, click Add. To remove the selected
 domain, click Delete.

LDAP Settings

 In the tab LDAP Settings, you can determine the LDAP
 server to use for authentication. To test the connection to your LDAP
 server, click Test Connection. To set expert LDAP
 settings or use default values, click Advanced
 Settings.

 For more information about LDAP configuration, see
 “LDAP—A Directory Service” (↑Security and Hardening Guide).

Configuring the Server Manually

 If you intend to use Samba as a server, install
 samba. The main configuration
 file for Samba is /etc/samba/smb.conf. This file can
 be divided into two logical parts. The [global] section
 contains the central and global settings. The following default sections
 contain the individual file and printer shares:

	
 [homes]

	
 [profiles]

	
 [users]

	
 [groups]

	
 [printers]

	
 [print$]

 Using this approach, options of the shares can be set
 differently or globally in the [global] section, which
 makes the configuration file easier to understand.

The global Section

 The following parameters of the [global] section should
 be modified to match the requirements of your network setup, so other
 machines can access your Samba server via SMB in a Windows environment.

	
 workgroup = WORKGROUP

	
 This line assigns the Samba server to a workgroup. Replace
 WORKGROUP with an appropriate workgroup of your
 networking environment. Your Samba server appears under its DNS name
 unless this name has been assigned to some other machine in the
 network. If the DNS name is not available, set the server name using
 netbiosname=MYNAME. For
 more details about this parameter, see the
 smb.conf man page.

	
 os level = 20

	
 This parameter triggers whether your Samba server tries to become LMB
 (local master browser) for its workgroup. Choose a very low value such
 as 2 to spare the existing Windows network from any
 interruptions caused by a misconfigured Samba server. More information
 about this topic can be found in the Network Browsing chapter
 of the Samba 3 Howto; for more information on the Samba 3 Howto, see
 Section “For More Information”.

 If no other SMB server is in your network (such as a Windows 2000
 server) and you want the Samba server to keep a list of all systems
 present in the local environment, set the os level
 to a higher value (for example, 65). Your Samba
 server is then chosen as LMB for your local network.

 When changing this setting, consider carefully how this could affect an
 existing Windows network environment. First test the changes in an
 isolated network or at a noncritical time of day.

	wins support and wins server
	
 To integrate your Samba server into an existing Windows network with an
 active WINS server, enable the wins server option and
 set its value to the IP address of that WINS server.

 If your Windows machines are connected to separate subnets and need to
 still be aware of each other, you have to set up a WINS server. To turn
 a Samba server into such a WINS server, set the option wins
 support = Yes. Make sure that only one Samba server of the
 network has this setting enabled. The options wins
 server and wins support must never be
 enabled at the same time in your smb.conf file.

Shares

 The following examples illustrate how a CD-ROM drive and the user
 directories (homes) are made available to the SMB
 clients.

	[cdrom]
	
 To avoid having the CD-ROM drive accidentally made available, these
 lines are deactivated with comment marks (semicolons in this case).
 Remove the semicolons in the first column to share the CD-ROM drive
 with Samba.

Example 21.1. A CD-ROM Share
[cdrom]
 comment = Linux CD-ROM
 path = /media/cdrom
 locking = No

	[cdrom] and comment
	
 The [cdrom] section entry is the name of the
 share that can be seen by all SMB clients on the network. An
 additional comment can be added to further
 describe the share.

	
 path = /media/cdrom

	path exports the directory
 /media/cdrom.

 By means of a very restrictive default configuration, this kind of
 share is only made available to the users present on this system. If
 this share should be made available to everybody, add a line
 guest ok = yes to the configuration. This setting
 gives read permissions to anyone on the network. It is recommended to
 handle this parameter with great care. This applies even more to the
 use of this parameter in the [global] section.

	
 [homes]

	
 The [homes] share is of special importance here. If
 the user has a valid account and password for the Linux file server and
 their own home directory, they can be connected to it.

Example 21.2. [homes] Share
[homes]
 comment = Home Directories
 valid users = %S
 browseable = No
 read only = No
 inherit acls = Yes

	[homes]
	
 As long as there is no other share using the share name of the user
 connecting to the SMB server, a share is dynamically generated using
 the [homes] share directives. The resulting name
 of the share is the user name.

	
 valid users = %S

	%S is replaced with the concrete name of the
 share when a connection has been successfully established. For a
 [homes] share, this is always the user name. As a
 consequence, access rights to a user's share are restricted
 exclusively to that user.

	
 browseable = No

	
 This setting makes the share invisible in the network environment.

	
 read only = No

	
 By default, Samba prohibits write access to any exported share by
 means of the read only = Yes parameter. To make a
 share writable, set the value read only = No,
 which is synonymous with writable = Yes.

	
 create mask = 0640

	
 Systems that are not based on MS Windows NT do not understand the
 concept of Unix permissions, so they cannot assign permissions when
 creating a file. The parameter create mask
 defines the access permissions assigned to newly created files. This
 only applies to writable shares. In effect, this setting means the
 owner has read and write permissions and the members of the owner's
 primary group have read permissions. valid users =
 %S prevents read access even if the group has read
 permissions. For the group to have read or write access, deactivate
 the line valid users = %S.

Do Not Share NFS Mounts with Samba

 Sharing NFS mounts with Samba may result in data loss
 and is not supported. Install Samba directly on the file server or
 consider using alternatives such as iSCSI.

Security Levels

 To improve security, each share access can be protected with a password.
 SMB offers the following ways of checking permissions:

	User Level Security (security = user)
	
 This variant introduces the concept of the user to SMB. Each user must
 register with the server with their own password. After
 registration, the server can grant access to individual exported shares
 dependent on user names.

	ADS Level Security (security = ADS)
	
 In this mode, Samba will act as a domain member in an Active Directory
 environment. To operate in this mode, the machine running Samba needs
 Kerberos installed and configured. You must join the machine using
 Samba to the ADS realm. This can be done using the YaST
 Windows Domain Membership module.

	Domain Level Security (security = domain)
	
 This mode will only work correctly if the machine has been joined into
 a Windows NT Domain. Samba will try to validate user name and password
 by passing it to a Windows NT Primary or Backup Domain Controller. The
 same way as a Windows NT Server would do. It expects the encrypted
 passwords parameter to be set to yes.

 The selection of share, user, server, or domain level security applies to
 the entire server. It is not possible to offer individual shares of a
 server configuration with share level security and others with user level
 security. However, you can run a separate Samba server for each configured
 IP address on a system.

 More information about this subject can be found in the Samba 3 HOWTO.
 For multiple servers on one system, pay attention to the options
 interfaces and bind interfaces only.

Advanced Topics

 This section describes topics that are beyond the basic introduction to
 autofs—auto-mounting of NFS shares that are
 available on your network, using wild cards in map files, and information
 specific to the CIFS file system.

/net Mount Point

 This helper mount point is useful if you use a lot of NFS shares.
 /net auto-mounts all NFS shares on your local network
 on demand. The entry is already present in the
 auto.master file, so all you need to do is uncomment
 it and restart autofs:

/net -hosts
tux > sudo systemctl restart autofs

 For example, if you have a server named jupiter with an
 NFS share called /export, you can mount it by typing

tux > sudo cd /net/jupiter/export

 on the command line.

Using Wild Cards to Auto-Mount Subdirectories

 If you have a directory with subdirectories that you need to auto-mount
 individually—the typical case is the /home
 directory with individual users' home directories inside—
 autofs offers a clever solution for that.

 In case of home directories, add the following line in
 auto.master:

/home /etc/auto.home

 Now you need to add the correct mapping to the
 /etc/auto.home file, so that the users' home
 directories are mounted automatically. One solution is to create separate
 entries for each directory:

wilber jupiter.com:/home/wilber
penguin jupiter.com:/home/penguin
tux jupiter.com:/home/tux
[...]

 This is very awkward as you need to manage the list of users inside
 auto.home. You can use the asterisk '*' instead of the
 mount point, and the ampersand '&' instead of the directory to be
 mounted:

* jupiter:/home/&

Auto-Mounting CIFS File System

 If you want to auto-mount an SMB/CIFS share (see
 Chapter 21, Samba for more information on the SMB/CIFS protocol),
 you need to modify the syntax of the map file. Add
 -fstype=cifs in the option field, and prefix the share
 location with a colon ':'.

mount point -fstype=cifs ://jupiter.com/export

NetworkManager

 NetworkManager is the ideal solution for laptops and other portable computers.
 With NetworkManager, you do not need to worry about configuring network
 interfaces and switching between networks when you are moving.

NetworkManager and wicked

 However, NetworkManager is not a suitable solution for all cases, so you can
 still choose between the wicked controlled method for
 managing network connections and NetworkManager. If you want to manage your
 network connection with NetworkManager, enable NetworkManager in the YaST Network
 Settings module as described in Section “Enabling or Disabling NetworkManager” and
 configure your network connections with NetworkManager. For a list of use cases
 and a detailed description of how to configure and use NetworkManager, refer to
 Chapter 28, Using NetworkManager.

 Some differences between wicked and NetworkManager:

	root Privileges
	
 If you use NetworkManager for network setup, you can easily switch, stop or
 start your network connection at any time from within your desktop
 environment using an applet. NetworkManager also makes it possible to change
 and configure wireless card connections without requiring
 root privileges. For this reason, NetworkManager is the ideal
 solution for a mobile workstation.

wicked also provides some ways to switch, stop or
 start the connection with or without user intervention, like
 user-managed devices. However, this always requires root
 privileges to change or configure a network device. This is often a
 problem for mobile computing, where it is not possible to preconfigure
 all the connection possibilities.

	Types of Network Connections
	
 Both wicked and NetworkManager can handle network
 connections with a wireless network (with WEP, WPA-PSK, and
 WPA-Enterprise access) and wired networks using DHCP and static
 configuration. They also support connection through dial-up and VPN.
 With NetworkManager you can also connect a mobile broadband (3G) modem
 or set up a DSL connection, which is not possible with the traditional
 configuration.

 NetworkManager tries to keep your computer connected at all times using the
 best connection available. If the network cable is accidentally
 disconnected, it tries to reconnect. It can find the network with the
 best signal strength from the list of your wireless connections and
 automatically use it to connect. To get the same functionality with
 wicked, more configuration effort is required.

NetworkManager Functionality and Configuration Files

 The individual network connection settings created with NetworkManager are
 stored in configuration profiles. The system
 connections configured with either NetworkManager or YaST are saved in
 /etc/NetworkManager/system-connections/* or in
 /etc/sysconfig/network/ifcfg-*. For GNOME, all
 user-defined connections are stored in GConf.

 In case no profile is configured, NetworkManager automatically creates one and
 names it Auto $INTERFACE-NAME. That is made in an
 attempt to work without any configuration for as many cases as (securely)
 possible. If the automatically created profiles do not suit your needs,
 use the network connection configuration dialogs provided by GNOME to
 modify them as desired. For more information, see
 Section “Configuring Network Connections”.

Controlling and Locking Down NetworkManager Features

 On centrally administered machines, certain NetworkManager features can be
 controlled or disabled with PolKit, for example if a user is allowed to
 modify administrator defined connections or if a user is allowed to
 define their own network configurations. To view or change the respective
 NetworkManager policies, start the graphical Authorizations
 tool for PolKit. In the tree on the left side, find them below the
 network-manager-settings entry. For an introduction to
 PolKit and details on how to use it, refer to
 “Authorization with PolKit” (↑Security and Hardening Guide).

Auto-Mounting an NFS Share

 The following procedure illustrates how to configure
 autofs to auto-mount an NFS share available on your
 network. It uses the information mentioned above, and assumes you
 are familiar with NFS exports. For more information on NFS, see
 Chapter 22, Sharing File Systems with NFS.

	
 Edit the master map file /etc/auto.master:

tux > sudo vim /etc/auto.master

 Add a new entry for the new NFS mount at the end of
 /etc/auto.master:

/nfs /etc/auto.nfs --timeout=10

 It tells autofs that the base mount point is
 /nfs, the NFS shares are specified in the
 /etc/auto.nfs map, and that all shares in this map
 will be automatically unmounted after 10 seconds of inactivity.

	
 Create a new map file for NFS shares:

tux > sudo vim /etc/auto.nfs
/etc/auto.nfs normally contains a separate line for
 each NFS share. Its format is described in
 Section “Map Files”. Add the line describing the mount point
 and the NFS share network address:

export jupiter.com:/home/geeko/doc/export

 The above line means that the /home/geeko/doc/export
 directory on the jupiter.com host will be auto-mounted
 to the /nfs/export directory on the local host
 (/nfs is taken from the
 auto.master map) when requested. The
 /nfs/export directory will be created automatically
 by autofs.

	
 Optionally comment out the related line in /etc/fstab
 if you previously mounted the same NFS share statically. The line should
 look similar to this:

#jupiter.com:/home/geeko/doc/export /nfs/export nfs defaults 0 0

	
 Reload autofs and check if it works:

tux > sudo systemctl restart autofs
ls -l /nfs/export
total 20
drwxr-xr-x 5 1001 users 4096 Jan 14 2017 .images/
drwxr-xr-x 10 1001 users 4096 Aug 16 2017 .profiled/
drwxr-xr-x 3 1001 users 4096 Aug 30 2017 .tmp/
drwxr-xr-x 4 1001 users 4096 Apr 25 08:56 manual/

 If you can see the list of files on the remote share, then
 autofs is functioning.

Rest for the Hard Disk

 In Linux, the hard disk can be put to sleep entirely if it is not needed or
 it can be run in a more economic or quieter mode. On modern laptops, you do
 not need to switch off the hard disks manually, because they automatically
 enter an economic operating mode whenever they are not needed. However, if
 you want to maximize power savings, test some of the following methods,
 using the hdparm command.

 It can be used to modify various hard disk settings. The option
 -y instantly switches the hard disk to the standby mode.
 -Y puts it to sleep. hdparm-SX causes the hard disk to be
 spun down after a certain period of inactivity. Replace
 X as follows: 0 disables this
 mechanism, causing the hard disk to run continuously. Values from
 1 to 240 are multiplied by 5
 seconds. Values from 241 to 251
 correspond to 1 to 11 times 30 minutes.

 Internal power saving options of the hard disk can be controlled with the
 option -B. Select a value from 0 to
 255 for maximum saving to maximum throughput. The result
 depends on the hard disk used and is difficult to assess. To make a hard
 disk quieter, use the option -M. Select a value from
 128 to 254 for quiet to fast.

 Often, it is not so easy to put the hard disk to sleep. In Linux, numerous
 processes write to the hard disk, waking it up repeatedly. Therefore, it is
 important to understand how Linux handles data that needs to be written to
 the hard disk. First, all data is buffered in the RAM. This buffer is
 monitored by the pdflush daemon.
 When the data reaches a certain age limit or when the buffer is filled to a
 certain degree, the buffer content is flushed to the hard disk. The buffer
 size is dynamic and depends on the size of the memory and the system load.
 By default, pdflush is set to short intervals to achieve maximum data
 integrity. It checks the buffer every 5 seconds and writes the data to the
 hard disk. The following variables are interesting:

	
 /proc/sys/vm/dirty_writeback_centisecs

	
 Contains the delay until a pdflush thread wakes up (in hundredths of a
 second).

	
 /proc/sys/vm/dirty_expire_centisecs

	
 Defines after which timeframe a dirty page should be written at latest.
 Default is 3000, which means 30 seconds.

	
 /proc/sys/vm/dirty_background_ratio

	
 Maximum percentage of dirty pages until pdflush begins to write them.
 Default is 5%.

	
 /proc/sys/vm/dirty_ratio

	
 When the dirty pages exceed this percentage of the total memory,
 processes are forced to write dirty buffers during their time slice
 instead of continuing to write.

Impairment of the Data Integrity

 Changes to the pdflush daemon
 settings endanger the data integrity.

 Apart from these processes, journaling file systems, like
 Btrfs,
 Ext3,
 Ext4 and others write their
 metadata independently from pdflush,
 which also prevents the hard disk from spinning down.
 To avoid this, a special kernel extension has been
 developed for mobile devices. To use the extension, install the
 laptop-mode-tools package and
 see
 /usr/src/linux/Documentation/laptops/laptop-mode.txt
 for details.

 Another important factor is the way active programs behave. For example,
 good editors regularly write hidden backups of the currently modified file
 to the hard disk, causing the disk to wake up. Features like this can be
 disabled at the expense of data integrity.

 In this connection, the mail daemon postfix uses the variable
 POSTFIX_LAPTOP. If this variable is set to
 yes, postfix accesses the hard disk far less frequently.

 In openSUSE Leap these technologies are controlled by
 laptop-mode-tools.

Configuration

 You need to configure autofs manually by editing
 its configuration files with a text editor, such as vim.
 There are two basic steps to configure
 autofs—the master map
 file, and specific map files.

The Master Map File

 The default master configuration file for autofs
 is /etc/auto.master. You can change its location by
 changing the value of the DEFAULT_MASTER_MAP_NAME option
 in /etc/sysconfig/autofs. Here is the content of the
 default one for openSUSE Leap:

#
Sample auto.master file
This is an automounter map and it has the following format
key [-mount-options-separated-by-comma] location
For details of the format look at autofs(5).[image: 1]
#
#/misc /etc/auto.misc[image: 2]
#/net -hosts
#
Include /etc/auto.master.d/*.autofs[image: 3]
#
#+dir:/etc/auto.master.d
#
Include central master map if it can be found using
nsswitch sources.
#
Note that if there are entries for /net or /misc (as
above) in the included master map any keys that are the
same will not be seen as the first read key seen takes
precedence.
#
+auto.master[image: 4]
	[image: 1]
	
 The autofs manual page (man 5
 autofs) offers a lot of valuable information on the format of
 the automounter maps.

	[image: 2]
	
 Although commented out (#) by default, this is an example of a simple
 automounter mapping syntax.

	[image: 3]
	
 In case you need to split the master map into several files, uncomment
 the line, and put the mappings (suffixed with .autofs)
 in the /etc/auto.master.d/ directory.

	[image: 4]
	+auto.master ensures that those using NIS
 (see “Configuring NIS Servers” (Section “Using NIS”, ↑Security and Hardening Guide) for more
 information on NIS) will still find their master map.

 Entries in auto.master have three fields with the
 following syntax:

mount point map name options
	mount point
	
 The base location where to mount the autofs
 file system, such as /home.

	map name
	
 The name of a map source to use for mounting. For the syntax of the maps
 files, see Section “Map Files”.

	options
	
 These options (if specified) will apply as defaults to all entries in
 the given map.

For More Information

 For more detailed information on the specific values of the optional
 map-type, format, and
 options, see the auto.master manual
 page (man 5 auto.master).

 The following entry in auto.master tells
 autofs to look in
 /etc/auto.smb, and create mount points in the
 /smb directory.

/smb /etc/auto.smb
Direct Mounts

 Direct mounts create a mount point at the path specified inside the
 relevant map file. Instead of specifying the mount point in
 auto.master, replace the mount point field with
 /-. For example, the following line tells
 autofs to create a mount point at the place
 specified in auto.smb:

/- /etc/auto.smb
Maps without Full Path

 If the map file is not specified with its full local or network path, it
 is located using the Name Service Switch (NSS) configuration:

/- auto.smb

Map Files

Other Types of Maps

 Although files are the most common types of maps for
 auto-mounting with autofs, there are other types
 as well. A map specification can be the output of a command, or a result
 of a query in LDAP or database. For more detailed information on map
 types, see the manual page man 5 auto.master.

 Map files specify the (local or network) source location, and the mount
 point where to mount the source locally. The general format of maps is
 similar to the master map. The difference is that the
 options appear between the mount point and the
 location instead of at the end of the entry:

mount point options location

 Make sure that map files are not marked as executable. You can remove
 the executable bits by executing chmod -x MAP_FILE.

	mount point
	
 Specifies where to mount the source location. This can be either a
 single directory name (so-called indirect mount) to
 be added to the base mount point specified in
 auto.master, or the full path of the mount point
 (direct mount, see Section “Direct Mounts”).

	options
	
 Specifies optional comma-separated list of mount options for the
 relevant entries. If auto.master contains options
 for this map file as well, theses are appended.

	location
	
 Specifies from where the file system is to be mounted. It is usually an
 NFS or SMB volume in the usual notation
 host_name:path_name. If the file system to be mounted
 begins with a '/' (such as local /dev entries or
 smbfs shares), a colon symbol ':' needs to be prefixed, such as
 :/dev/sda1.

System Rollback by Booting from Snapshots

 The GRUB 2 version included on openSUSE Leap can boot from Btrfs snapshots.
 Together with Snapper's rollback feature, this allows to recover a
 misconfigured system. Only snapshots created for the default Snapper
 configuration (root) are bootable.

Supported Configuration

 As of openSUSE Leap15.2 system rollbacks are only supported if
 the default subvolume configuration of the root partition has not been
 changed.

 When booting a snapshot, the parts of the file system included in the
 snapshot are mounted read-only; all other file systems and parts that are
 excluded from snapshots are mounted read-write and can be modified.

Undoing Changes Compared to Rollback

 When working with snapshots to restore data, it is important to know that
 there are two fundamentally different scenarios Snapper can handle:

	Undoing Changes
	
 When undoing changes as described in Section “Using Snapper to Undo Changes”,
 two snapshots are compared and the changes between these two snapshots
 are reverted. Using this method also allows to explicitly exclude
 selected files from being restored.

	Rollback
	
 When doing rollbacks as described in the following, the system is reset
 to the state at which the snapshot was taken.

 To do a rollback from a bootable snapshot, the following requirements must
 be met. When doing a default installation, the system is set up accordingly.

Requirements for a Rollback from a Bootable Snapshot
	
 The root file system needs to be Btrfs. Booting from LVM volume snapshots
 is not supported.

	
 The root file system needs to be on a single device, a single partition
 and a single subvolume. Directories that are excluded from snapshots such
 as /srv (see Section “Directories That Are Excluded from Snapshots”
 for a full list) may reside on separate partitions.

	
 The system needs to be bootable via the installed boot loader.

 To perform a rollback from a bootable snapshot, do as follows:

	
 Boot the system. In the boot menu choose Bootable
 snapshots and select the snapshot you want to boot. The list of
 snapshots is listed by date—the most recent snapshot is listed
 first.

	
 Log in to the system. Carefully check whether everything works as
 expected. Note that you cannot write to any directory that is part of the
 snapshot. Data you write to other directories will
 not get lost, regardless of what you do next.

	
 Depending on whether you want to perform the rollback or not, choose your
 next step:

	
 If the system is in a state where you do not want to do a rollback,
 reboot to boot into the current system state. You can then choose a different
 snapshot, or start the rescue system.

	
 To perform the rollback, run

tux > sudo snapper rollback

 and reboot afterward. On the boot screen, choose the default boot entry
 to reboot into the reinstated system. A snapshot of the file system status
 before the rollback is created. The default subvolume for root will
 be replaced with a fresh read-write snapshot.
 For details, see Section “Snapshots after Rollback”.

 It is useful to add a description for the snapshot with the -d option.
 For example:

New file system root since rollback on DATETIME

Rolling Back to a Specific Installation State

 If snapshots are not disabled during installation, an initial bootable
 snapshot is created at the end of the initial system installation. You can
 go back to that state at any time by booting this snapshot. The snapshot
 can be identified by the description after installation.

 A bootable snapshot is also created when starting a system upgrade to a
 service pack or a new major release (provided snapshots are not disabled).

Snapshots after Rollback

 Before a rollback is performed, a snapshot of the running file system
 is created. The description references the ID of the snapshot that
 was restored in the rollback.

 Snapshots created by rollbacks receive the value number
 for the Cleanup attribute. The rollback snapshots are
 therefore automatically deleted when the set number of snapshots is reached.
 Refer to Section “Automatic Snapshot Clean-Up” for details.
 If the snapshot contains important data, extract the data from the snapshot
 before it is removed.

Example of Rollback Snapshot

 For example, after a fresh installation the following snapshots are
 available on the system:

root # snapper --iso list
Type | # | | Cleanup | Description | Userdata
-------+---+ ... +---------+-----------------------+--------------
single | 0 | | | current |
single | 1 | | | first root filesystem |
single | 2 | | number | after installation | important=yes

 After running sudo snapper rollback snapshot
 3 is created and contains the state of the system
 before the rollback was executed. Snapshot 4 is
 the new default Btrfs subvolume and thus the system after a reboot.

root # snapper --iso list
Type | # | | Cleanup | Description | Userdata
-------+---+ ... +---------+-----------------------+--------------
single | 0 | | | current |
single | 1 | | number | first root filesystem |
single | 2 | | number | after installation | important=yes
single | 3 | | number | rollback backup of #1 | important=yes
single | 4 | | | |

Accessing and Identifying Snapshot Boot Entries

 To boot from a snapshot, reboot your machine and choose Start
 Bootloader from a read-only snapshot. A screen listing all
 bootable snapshots opens. The most recent snapshot is listed first, the
 oldest last. Use the keys ↓ and
 ↑ to navigate and press Enter to
 activate the selected snapshot. Activating a snapshot from the boot menu
 does not reboot the machine immediately, but rather opens the boot loader
 of the selected snapshot.

Figure 3.1. Boot Loader: Snapshots
[image: Boot Loader: Snapshots]

 Each snapshot entry in the boot loader follows a naming scheme which makes
 it possible to identify it easily:

[*][image: 1]OS[image: 2] (KERNEL[image: 3],DATE[image: 4]TTIME[image: 5],DESCRIPTION[image: 6])
	[image: 1]
	
 If the snapshot was marked important, the entry is
 marked with a *.

	[image: 2]
	
 Operating system label.

	[image: 4]
	
 Date in the format YYYY-MM-DD.

	[image: 5]
	
 Time in the format HH:MM.

	[image: 6]
	
 This field contains a description of the snapshot. In case of a manually
 created snapshot this is the string created with the option
 --description or a custom string (see
 Setting a Custom Description for Boot Loader Snapshot Entries). In case
 of an automatically created snapshot, it is the tool that was called, for
 example zypp(zypper) or
 yast_sw_single. Long descriptions may be truncated,
 depending on the size of the boot screen.

Setting a Custom Description for Boot Loader Snapshot Entries

 It is possible to replace the default string in the description field of a
 snapshot with a custom string. This is for example useful if an
 automatically created description is not sufficient, or a user-provided
 description is too long. To set a custom string
 STRING for snapshot
 NUMBER, use the following command:

tux > sudo snapper modify --userdata "bootloader=STRING" NUMBER

 The description should be no longer than 25 characters—everything
 that exceeds this size will not be readable on the boot screen.

Limitations

 A complete system rollback, restoring the complete
 system to the identical state as it was in when a snapshot was taken, is
 not possible.

Directories Excluded from Snapshots

 Root file system snapshots do not contain all directories. See
 Section “Directories That Are Excluded from Snapshots” for details and reasons. As a
 general consequence, data from these directories is not restored,
 resulting in the following limitations.

	
 Add-ons and Third Party Software may be Unusable after a Rollback

	
 Applications and add-ons installing data in subvolumes excluded from
 the snapshot, such as /opt, may not work after a
 rollback, if others parts of the application data are also installed on
 subvolumes included in the snapshot. Re-install the application or the
 add-on to solve this problem.

	File Access Problems
	
 If an application had changed file permissions and/or ownership in
 between snapshot and current system, the application may not be able to
 access these files. Reset permissions and/or ownership for the affected
 files after the rollback.

	Incompatible Data Formats
	
 If a service or an application has established a new data format in
 between snapshot and current system, the application may not be able to
 read the affected data files after a rollback.

	Subvolumes with a Mixture of Code and Data
	
 Subvolumes like /srv may contain a mixture of code
 and data. A rollback may result in non-functional code. A downgrade of
 the PHP version, for example, may result in broken PHP scripts for the
 Web server.

	User Data
	
 If a rollback removes users from the system, data that is owned by
 these users in directories excluded from the snapshot, is not removed.
 If a user with the same user ID is created, this user will inherit the
 files. Use a tool like find to locate and remove
 orphaned files.

No Rollback of Boot Loader Data

 A rollback of the boot loader is not possible, since all
 “stages” of the boot loader must fit together. This cannot be
 guaranteed when doing rollbacks of /boot.

Configuring One-time Sessions on the VNC Server

 A one-time session is initiated by the remote client. It starts a graphical
 login screen on the server. This way you can choose the user which starts
 the session and, if supported by the login manager, the desktop environment.
 When you terminate the client connection to such a VNC session, all
 applications started within that session will be terminated, too. One-time
 VNC sessions cannot be shared, but it is possible to have multiple sessions
 on a single host at the same time.

Procedure 4.1. Enabling One-time VNC Sessions
	
 Start YaST+Network
 Services+Remote Administration (VNC).

	
 Check Allow Remote Administration Without Session
 Management.

	
 Activate Enable access using a web browser if you plan
 to access the VNC session in a Web browser window.

	
 If necessary, also check Open Port in Firewall (for
 example, when your network interface is configured to be in the External
 Zone). If you have more than one network interface, restrict opening the
 firewall ports to a specific interface via Firewall
 Details.

	
 Confirm your settings with Next.

	
 In case not all needed packages are available yet, you need to approve the
 installation of missing packages.

Restart the Display Manager

 YaST makes changes to the display manager settings. You need to log out
 of your current graphical session and restart the display manager for the
 changes to take effect.

Figure 4.7. Remote Administration
[image: Remote Administration]

Available Configurations

 The default configuration on openSUSE Leap serves sessions with a
 resolution of 1024x768 pixels at a color depth of 16-bit. The sessions are
 available on ports 5901 for
 “regular” VNC viewers (equivalent to VNC display
 1) and on port
 5801 for Web browsers.

 Other configurations can be made available on different
 ports, see
 Section “Configuring One-time VNC Sessions”.

 VNC display numbers and X display numbers are independent in one-time
 sessions. A VNC display number is manually assigned to every configuration
 that the server supports (:1 in the example above). Whenever a VNC session
 is initiated with one of the configurations, it automatically gets a free X
 display number.

 By default, both the VNC client and server try to communicate securely via a
 self-signed SSL certificate, which is generated after installation. You can
 either use the default one, or replace it with your own. When using the
 self-signed certificate, you need to confirm its signature before the first
 connection—both in the VNC viewer and the Web browser.

Initiating a One-time VNC Session

 To connect to a one-time VNC session, a VNC viewer must be installed, see
 also Section “The vncviewer Client”. Alternatively use a
 JavaScript-capable Web browser to view the VNC session by entering the
 following URL: http://jupiter.example.com:5801

Configuring One-time VNC Sessions

 You can skip this section, if you do not need or want to modify the default
 configuration.

 One-time VNC sessions are started via the systemd socket
 xvnc.socket. By default it offers six
 configuration blocks: three for VNC viewers (vnc1 to
 vnc3), and three serving a JavaScript client
 (vnchttpd1 to vnchttpd3). By default
 only vnc1 and vnchttpd1 are active.

 To activate the VNC server socket at boot time, run the following command:

tux > sudo systemctl enable xvnc.socket

 To start the socket immediately, run:

tux > sudo systemctl start xvnc.socket

 The Xvnc server can be configured via the
 server_args option. For a list of options, see
 Xvnc --help.

 When adding custom configurations, make sure they are not using ports that
 are already in use by other configurations, other services, or existing
 persistent VNC sessions on the same host.

 Activate configuration changes by entering the following command:

tux > sudo systemctl reload xvnc.socket
Firewall and VNC Ports

 When activating Remote Administration as described in
 Procedure 4.1, “Enabling One-time VNC Sessions”, the ports
 5801 and
 5901 are opened in the firewall.
 If the network interface serving the VNC sessions is protected by a
 firewall, you need to manually open the respective ports when activating
 additional ports for VNC sessions. See
 “Masquerading and Firewalls” (↑Security and Hardening Guide) for instructions.

Showing Exclusive Disk Space Used by Snapshots

 Snapshots share data, for efficient use of storage space, so using ordinary
 commands like du and df won't measure
 used disk space accurately. When you want to free up disk space on Btrfs
 with quotas enabled, you need to know how much exclusive disk space is
 used by each snapshot, rather than shared space. Snapper 0.6 and up reports
 the used disk space for each snapshot in the
 Used Space column:

root # snapper--iso list
 # | Type | Pre # | Date | User | Used Space | Cleanup | Description | Userdata
----+--------+-------+---------------------+------+------------+---------+-----------------------+--------------
 0 | single | | | root | | | current |
 1* | single | | 2019-07-22 13:08:38 | root | 16.00 KiB | | first root filesystem |
 2 | single | | 2019-07-22 14:21:05 | root | 14.23 MiB | number | after installation | important=yes
 3 | pre | | 2019-07-22 14:26:03 | root | 144.00 KiB | number | zypp(zypper) | important=no
 4 | post | 3 | 2019-07-22 14:26:04 | root | 112.00 KiB | number | | important=no
 5 | pre | | 2019-07-23 08:19:36 | root | 128.00 KiB | number | zypp(zypper) | important=no
 6 | post | 5 | 2019-07-23 08:19:43 | root | 80.00 KiB | number | | important=no
 7 | pre | | 2019-07-23 08:20:50 | root | 256.00 KiB | number | yast sw_single |
 8 | pre | | 2019-07-23 08:23:22 | root | 112.00 KiB | number | zypp(ruby.ruby2.5) | important=no
 9 | post | 8 | 2019-07-23 08:23:35 | root | 64.00 KiB | number | | important=no
10 | post | 7 | 2019-07-23 08:24:05 | root | 16.00 KiB | number | |

 The btrfs command provides another view of space used by
 snapshots:

root # btrfs qgroup show -p /
qgroupid rfer excl parent
-------- ---- ---- ------
0/5 16.00KiB 16.00KiB ---
[...]
0/272 3.09GiB 14.23MiB 1/0
0/273 3.11GiB 144.00KiB 1/0
0/274 3.11GiB 112.00KiB 1/0
0/275 3.11GiB 128.00KiB 1/0
0/276 3.11GiB 80.00KiB 1/0
0/277 3.11GiB 256.00KiB 1/0
0/278 3.11GiB 112.00KiB 1/0
0/279 3.12GiB 64.00KiB 1/0
0/280 3.12GiB 16.00KiB 1/0
1/0 3.33GiB 222.95MiB ---

 The qgroupid column displays the identification number for
 each subvolume, assigning a qgroup level/ID combination.

 The rfer column displays the total amount of data
 referred to in the subvolume.

 The excl column displays the exclusive data in each
 subvolume.

 The parent column shows the parent qgroup of the subvolumes.

 The final item, 1/0, shows the totals for the parent
 qgroup. In the above example, 222.95 MiB will be freed if all subvolumes
 are removed. Run the following command to see which snapshots are associated
 with each subvolume:

root # btrfs subvolume list -st /
ID	gen	top level	path	
--	---	---------	----	
267	298	266		@/.snapshots/1/snapshot
272	159	266		@/.snapshots/2/snapshot
273	170	266		@/.snapshots/3/snapshot
274	171	266		@/.snapshots/4/snapshot
275	287	266		@/.snapshots/5/snapshot
276	288	266		@/.snapshots/6/snapshot
277	292	266		@/.snapshots/7/snapshot
278	296	266		@/.snapshots/8/snapshot
279	297	266		@/.snapshots/9/snapshot
280	298	266		@/.snapshots/10/snapshot

 Doing an upgrade from one service pack to another results in snapshots
 occupying a lot of disk space on the system subvolumes. Manually deleting
 these snapshots after they are no longer needed is recommended. See
 Section “Deleting Snapshots” for details.

 Installing the Latest Kernel Version from the Repository Kernel:HEAD

	
 Add the Kernel:HEAD repository with (the repository
 is added using the alias kernel-repo):

tux > sudo zypper ar \
http://download.opensuse.org/repositories/Kernel:/HEAD/standard/ \
kernel-repo

	
 To refresh repositories, run:

tux > sudo zypper ref

	
 To upgrade the kernel to the latest version in the
 Kernel:HEAD repository, run:

tux > sudo zypper dist-upgrade --allow-vendor-change --from kernel-repo

	
 Reboot the machine.

Installing from Kernel:HEAD May Break the System

 Installing a kernel from Kernel:HEAD should never be
 necessary, because important fixes are backported by SUSE and are made
 available as official updates. Installing the latest kernel only makes
 sense for kernel developers and kernel testers. If installing from
 Kernel:HEAD, be aware that it may break your system.
 Make sure to always have the original kernel available for booting as
 well.

More Information

 Extensive information about GRUB 2 is available at https://www.gnu.org/software/grub/. Also refer to the
 grub info page.

Setting Up Team Devices for Network Teaming

 The term “link aggregation” is the general term which describes
 combining (or aggregating) a network connection to provide a logical layer.
 Sometimes you find the terms “channel teaming”, “Ethernet
 bonding”, “port truncating”, etc. which are synonyms and
 refer to the same concept.

 This concept is widely known as “bonding” and was originally
 integrated into the Linux kernel (see Section “Setting Up Bonding Devices” for the
 original implementation). The term Network Teaming is used to
 refer to the new implementation of this concept.

 The main difference between bonding and Network Teaming is that teaming supplies a
 set of small kernel modules responsible for providing an interface
 for teamd instances. Everything else is handled in user space. This is
 different from the original bonding implementation which contains all of its
 functionality exclusively in the kernel. For a comparison refer to Table 13.5, “Feature Comparison between Bonding and Team”.

Table 13.5. Feature Comparison between Bonding and Team
	Feature	Bonding	Team
	broadcast, round-robin TX policy	yes	yes
	active-backup TX policy	yes	yes
	LACP (802.3ad) support	yes	yes
	hash-based TX policy	yes	yes
	user can set hash function	no	yes
	TX load-balancing support (TLB)	yes	yes
	TX load-balancing support for LACP	no	yes
	Ethtool link monitoring	yes	yes
	ARP link monitoring	yes	yes
	NS/NA (IPV6) link monitoring	no	yes
	RCU locking on TX/RX paths	no	yes
	port prio and stickiness	no	yes
	separate per-port link monitoring setup	no	yes
	multiple link monitoring setup	limited	yes
	VLAN support	yes	yes
	multiple device stacking	yes	yes
	Source: http://libteam.org/files/teamdev.pp.pdf

 Both implementations, bonding and Network Teaming, can be used in
 parallel. Network Teaming is an alternative to the existing bonding
 implementation. It does not replace bonding.

 Network Teaming can be used for different use cases. The two most important use
 cases are explained later and involve:

	
 Load balancing between different network devices.

	
 Failover from one network device to another in case one of the devices
 should fail.

 Currently, there is no YaST module to support creating a teaming device.
 You need to configure Network Teaming manually. The general procedure is shown
 below which can be applied for all your Network Teaming configurations:

Procedure 13.1. General Procedure
	
 Make sure you have all the necessary packages installed. Install the
 packages
 libteam-tools,
 libteamdctl0, and
 python-libteam.

	
 Create a configuration file under
 /etc/sysconfig/network/. Usually it will be
 ifcfg-team0. If you need more than one Network Teaming
 device, give them ascending numbers.

 This configuration file contains several variables which are explained in
 the man pages (see man ifcfg and man
 ifcfg-team). An example configuration can be found in your
 system in the file /etc/sysconfig/network/ifcfg.template.

	
 Remove the configuration files of the interfaces which will be used for the
 teaming device (usually ifcfg-eth0 and
 ifcfg-eth1).

 It is recommended to make a backup and remove both files. Wicked will
 re-create the configuration files with the necessary parameters for
 teaming.

	
 Optionally, check if everything is included in Wicked's configuration file:

 tux >
 sudo
 wicked show-config

	
 Start the Network Teaming device team0:

 tux >
 sudo
 wicked ifup all team0

 In case you need additional debug information, use the option
 --debug all after the all subcommand.

	
 Check the status of the Network Teaming device. This can be done by the following
 commands:

	
 Get the state of the teamd instance from Wicked:

 tux >
 sudo
 wicked ifstatus --verbose team0

	
 Get the state of the entire instance:

 tux >
 sudo
 teamdctl team0 state

	
 Get the systemd state of the teamd instance:

 tux >
 sudo
 systemctl status teamd@team0

 Each of them shows a slightly different view depending on your needs.

	
 In case you need to change something in the
 ifcfg-team0 file afterward, reload its configuration
 with:

 tux >
 sudo
 wicked ifreload team0

 Do not use systemctl for starting or
 stopping the teaming device! Instead, use the wicked
 command as shown above.

 To completely remove the team device, use this procedure:

Procedure 13.2. Removing a Team Device
	
 Stop the Network Teaming device team0:

 tux >
 sudo
 wicked ifdown team0

	
 Rename the file /etc/sysconfig/network/ifcfg-team0 to /etc/sysconfig/network/.ifcfg-team0.
 Inserting a dot in front of the file name makes it
 “invisible” for wicked. If you really do not need the
 configuration anymore, you can also remove the file.

	Reload the configuration:

 tux >
 sudo
 wicked ifreload all

Use Case: Load Balancing with Network Teaming

 Load balancing is used to improve bandwidth. Use the following configuration
 file to create a Network Teaming device with load balancing capabilities. Proceed
 with Procedure 13.1, “General Procedure” to set up the device. Check the
 output with teamdctl.

Example 13.12. Configuration for Load Balancing with Network Teaming
STARTMODE=auto [image: 1]
BOOTPROTO=static [image: 2]
IPADDRESS="192.168.1.1/24" [image: 2]
IPADDR6="fd00:deca:fbad:50::1/64" [image: 2]

TEAM_RUNNER="loadbalance" [image: 3]
TEAM_LB_TX_HASH="ipv4,ipv6,eth,vlan"
TEAM_LB_TX_BALANCER_NAME="basic"
TEAM_LB_TX_BALANCER_INTERVAL="100"

TEAM_PORT_DEVICE_0="eth0" [image: 4]
TEAM_PORT_DEVICE_1="eth1" [image: 4]

TEAM_LW_NAME="ethtool" [image: 5]
TEAM_LW_ETHTOOL_DELAY_UP="10" [image: 6]
TEAM_LW_ETHTOOL_DELAY_DOWN="10" [image: 6]
	[image: 1]
	
 Controls the start of the teaming device. The value of
 auto means, the interface will be set up when the
 network service is available and will be started automatically on every
 reboot.

 In case you need to control the device yourself (and prevent it from
 starting automatically), set STARTMODE to
 manual.

	[image: 2]
	
 Sets a static IP address (here
 192.168.1.1
 for IPv4 and
 fd00:deca:fbad:50::1 for
 IPv6).

 If the Network Teaming device should use a dynamic IP address, set
 BOOTPROTO="dhcp" and remove (or comment) the line with
 IPADDRESS and IPADDR6.

	[image: 3]
	
 Sets TEAM_RUNNER to loadbalance to
 activate the load balancing mode.

	[image: 4]
	
 Specifies one or more devices which should be aggregated to create the
 Network Teaming device.

	[image: 5]
	
 Defines a link watcher to monitor the state of subordinate devices. The
 default value ethtool checks only if the device is up
 and accessible. This makes this check fast enough. However, it does not
 check if the device can really send or receive packets.

 If you need a higher confidence in the connection, use the
 arp_ping option. This sends pings to an arbitrary host
 (configured in the TEAM_LW_ARP_PING_TARGET_HOST
 variable). The Network Teaming device is considered to be up only if the
 replies are received.

	[image: 6]
	
 Defines the delay in milliseconds between the link coming up (or down)
 and the runner being notified.

Use Case: Failover with Network Teaming

 Failover is used to ensure high availability of a critical Network Teaming device
 by involving a parallel backup network device. The backup network device is
 running all the time and takes over if and when the main device fails.

 Use the following configuration file to create a Network Teaming device with
 failover capabilities. Proceed with Procedure 13.1, “General Procedure” to
 set up the device. Check the output with teamdctl.

Example 13.13. Configuration for DHCP Network Teaming Device
STARTMODE=auto [image: 1]
BOOTPROTO=static [image: 2]
IPADDR="192.168.1.2/24" [image: 2]
IPADDR6="fd00:deca:fbad:50::2/64" [image: 2]

TEAM_RUNNER=activebackup [image: 3]
TEAM_PORT_DEVICE_0="eth0" [image: 4]
TEAM_PORT_DEVICE_1="eth1" [image: 4]

TEAM_LW_NAME=ethtool [image: 5]
TEAM_LW_ETHTOOL_DELAY_UP="10" [image: 6]
TEAM_LW_ETHTOOL_DELAY_DOWN="10" [image: 6]
	[image: 1]
	
 Controls the start of the teaming device. The value of
 auto means the interface will be set up when the
 network service is available and will be started automatically on every
 reboot.

 In case you need to control the device yourself (and prevent it from
 starting automatically), set STARTMODE to
 manual.

	[image: 2]
	
 Sets a static IP address (here
 192.168.1.2
 for IPv4 and
 fd00:deca:fbad:50::2 for
 IPv6).

 If the Network Teaming device should use a dynamic IP address, set
 BOOTPROTO="dhcp" and remove (or comment) the line with
 IPADDRESS and IPADDR6.

	[image: 3]
	
 Sets TEAM_RUNNER to activebackup to
 activate the failover mode.

	[image: 4]
	
 Specifies one or more devices which should be aggregated to create the
 Network Teaming device.

	[image: 5]
	
 Defines a link watcher to monitor the state of subordinate devices. The
 default value ethtool checks only if the device is up
 and accessible. This makes this check fast enough. However, it does not
 check if the device can really send or receive packets.

 If you need a higher confidence in the connection, use the
 arp_ping option. This sends pings to an arbitrary host
 (configured in the TEAM_LW_ARP_PING_TARGET_HOST
 variable). Only if the replies are received, the Network Teaming device is
 considered to be up.

	[image: 6]
	
 Defines the delay in milliseconds between the link coming up (or down)
 and the runner being notified.

Use Case: VLAN over Team Device

 VLAN is an abbreviation of Virtual Local Area Network.
 It allows the running of multiple logical (virtual)
 Ethernets over one single physical Ethernet. It logically splits the
 network into different broadcast domains so that packets are only switched
 between ports that are designated for the same VLAN.

 The following use case creates two static VLANs on top of a team device:

	vlan0,
 bound to the IP address 192.168.10.1

	vlan1,
 bound to the IP address 192.168.20.1

Proceed as follows:
	
 Enable the VLAN tags on your switch. To use load balancing
 for your team device, your switch needs to be capable of
 Link Aggregation Control Protocol (LACP) (802.3ad).
 Consult your hardware manual about the details.

	
 Decide if you want to use load balancing or failover for your team device.
 Set up your team device as described in Section “Use Case: Load Balancing with Network Teaming”
 or Section “Use Case: Failover with Network Teaming”.

	
 In /etc/sysconfig/network create a file
 ifcfg-vlan0 with the following content:

STARTMODE="auto"
BOOTPROTO="static" [image: 1]
IPADDR='192.168.10.1/24' [image: 2]
ETHERDEVICE="team0" [image: 3]
VLAN_ID="0" [image: 4]
VLAN='yes'
	[image: 1]
	
 Defines a fixed IP address, specified in IPADDR.

	[image: 2]
	
 Defines the IP address, here with its netmask.

	[image: 3]
	
 Contains the real interface to use for the VLAN interface, here our
 team device (team0).

	[image: 4]
	
 Specifies a unique ID for the VLAN. Preferably, the file name and the
 VLAN_ID corresponds to the name
 ifcfg-vlanVLAN_ID.
 In our case VLAN_ID is 0 which
 leads to the file name ifcfg-vlan0.

	
 Copy the file /etc/sysconfig/network/ifcfg-vlan0 to
 /etc/sysconfig/network/ifcfg-vlan1 and change the
 following values:

	IPADDR from 192.168.10.1/24 to 192.168.20.1/24.

	VLAN_ID from 0 to
 1.

	
 Start the two VLANs:

root # wicked ifup vlan0 vlan1

	
 Check the output of ifconfig:

root # ifconfig -a
[...]
vlan0 Link encap:Ethernet HWaddr 08:00:27:DC:43:98
 inet addr:192.168.10.1 Bcast:192.168.10.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fedc:4398/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:816 (816.0 b)

vlan1 Link encap:Ethernet HWaddr 08:00:27:DC:43:98
 inet addr:192.168.20.1 Bcast:192.168.20.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fedc:4398/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:816 (816.0 b)

Name Resolution

 DNS assists in assigning an IP address to one or more names and assigning a
 name to an IP address. In Linux, this conversion is usually carried out by a
 special type of software known as bind. The machine that takes care of this
 conversion is called a name server. The names make up a
 hierarchical system in which each name component is separated by a period.
 The name hierarchy is, however, independent of the IP address hierarchy
 described above.

 Consider a complete name, such as
 jupiter.example.com, written in the
 format hostname.domain. A full
 name, called a fully qualified domain name (FQDN),
 consists of a host name and a domain name
 (example.com). The latter
 also includes the top level domain or TLD
 (com).

 TLD assignment has become quite confusing for historical reasons.
 Traditionally, three-letter domain names are used in the USA. In the rest of
 the world, the two-letter ISO national codes are the standard. In addition
 to that, longer TLDs were introduced in 2000 that represent certain spheres
 of activity (for example, .info,
 .name,
 .museum).

 In the early days of the Internet (before 1990), the file
 /etc/hosts was used to store the names of all the
 machines represented over the Internet. This quickly proved to be
 impractical in the face of the rapidly growing number of computers connected
 to the Internet. For this reason, a decentralized database was developed to
 store the host names in a widely distributed manner. This database, similar
 to the name server, does not have the data pertaining to all hosts in the
 Internet readily available, but can dispatch requests to other name servers.

 The top of the hierarchy is occupied by root name
 servers. These root name servers manage the top level domains and
 are run by the Network Information Center (NIC). Each root name server knows
 about the name servers responsible for a given top level domain. Information
 about top level domain NICs is available at
 http://www.internic.net.

 DNS can do more than resolve host names. The name server also knows which
 host is receiving e-mails for an entire domain—the mail
 exchanger (MX).

 For your machine to resolve an IP address, it must know about at least one
 name server and its IP address. Easily specify such a name server using
 YaST. The configuration of name server access with
 openSUSE® Leap is described in
 Section “Configuring Host Name and DNS”. Setting up your own name
 server is described in Chapter 19, The Domain Name System.

 The protocol whois is closely related to DNS. With this
 program, quickly find out who is responsible for a given domain.

MDNS and .local Domain Names

 The .local top level domain is treated as link-local
 domain by the resolver. DNS requests are send as multicast DNS requests
 instead of normal DNS requests. If you already use the
 .local domain in your name server configuration, you
 must switch this option off in /etc/host.conf. For
 more information, see the host.conf manual page.

 To switch off MDNS during installation, use
 nomdns=1 as a boot parameter.

 For more information on multicast DNS, see
 http://www.multicastdns.org.

Part II. System

Chapter 29. Power Management

 Power management is especially important on laptop computers, but is also
 useful on other systems. ACPI (Advanced Configuration and Power Interface) is
 available on all modern computers (laptops, desktops, and servers). Power
 management technologies require suitable hardware and BIOS routines. Most
 laptops and many modern desktops and servers meet these requirements. It is
 also possible to control CPU frequency scaling to save power or decrease
 noise.

Power Saving Functions

 Power saving functions are not only significant for the mobile use of
 laptops, but also for desktop systems. The main functions and their use in
 ACPI are:

	Standby
	
 Not supported.

	Suspend (to memory)
	
 This mode writes the entire system state to the RAM. Subsequently, the
 entire system except the RAM is put to sleep. In this state, the computer
 consumes very little power. The advantage of this state is the
 possibility of resuming work at the same point within a few seconds
 without having to boot and restart applications. This function
 corresponds to the ACPI state S3.

	Hibernation (suspend to disk)

	
 In this operating mode, the entire system state is written to the hard
 disk and the system is powered off. There must be a swap partition at
 least as big as the RAM to write all the active data. Reactivation from
 this state takes about 30 to 90 seconds. The state prior to the suspend
 is restored. Some manufacturers offer useful hybrid variants of this
 mode, such as RediSafe in IBM Thinkpads. The corresponding ACPI state is
 S4. In Linux, suspend to disk is performed by kernel
 routines that are independent from ACPI.

Changed UUID for Swap Partitions When Formatting via mkswap
Do not reformat existing swap partitions with mkswap
 if possible. Reformatting with mkswap will change
 the UUID value of the swap partition. Either reformat via YaST (which
 will update /etc/fstab) or adjust
 /etc/fstab manually.

	Battery Monitor

	
 ACPI checks the battery charge status and provides information about it.
 Additionally, it coordinates actions to perform when a critical charge
 status is reached.

	Automatic Power-Off
	
 Following a shutdown, the computer is powered off. This is especially
 important when an automatic shutdown is performed shortly before the
 battery is empty.

	Processor Speed Control
	
 In connection with the CPU, energy can be saved in three different ways:
 frequency and voltage scaling (also known as
 PowerNow! or
 Speedstep), throttling and putting
 the processor to sleep (C-states). Depending on the operating mode of the
 computer, these methods can also be combined.

Dynamic Update of Zone Data

 The term dynamic update refers to operations by which
 entries in the zone files of a master server are added, changed, or deleted.
 This mechanism is described in RFC 2136. Dynamic update is configured
 individually for each zone entry by adding an optional
 allow-update or
 update-policy rule. Zones to update dynamically
 should not be edited by hand.

 Transmit the entries to update to the server with the command
 nsupdate. For the exact syntax of this command, check the
 manual page for nsupdate (man 8
 nsupdate). For security reasons, any such update should be
 performed using TSIG keys as described in Section “Secure Transactions”.

Installing/Removing Multiple Kernel Versions with Zypper

 You can install or remove multiple kernels with zypper:

	
 Use the command zypper se -s 'kernel*' to display a
 list of all kernel packages available:

S | Name | Type | Version | Arch | Repository
--+----------------+------------+-----------------+--------+-------------------
i+ | kernel-default | package | 5.3.18-8.2 | x86_64 | (System Packages)
v | kernel-default | package | 5.3.18-10.1 | x86_64 | SLE-Module-Basesystem15-SP2-Pool
 | kernel-default-base | package | 5.3.18-10.1.4.8 | x86_64 | SLE-Module-Basesystem15-SP2-Pool
 | kernel-default-devel | package | 5.3.18-10.1 | x86_64 | SLE-Module-Basesystem15-SP2-Pool
 | kernel-devel | package | 5.3.18-10.1 | noarch | SLE-Module-Basesystem15-SP2-Pool
i | kernel-firmware | package | 20200107-3.12.1 | noarch | SLE-Module-Basesystem15-SP2-Pool

	
 Specify the exact version when installing:

tux > sudo zypper in kernel-default-5.3.18-8.2

	
 When uninstalling a kernel, use the commands zypper se -si
 'kernel*' to list all kernels installed and zypper
 rmPACKAGENAME-VERSION to remove the
 package.

Starting and Stopping Apache

 If configured with YaST as described in
 Section “Configuring Apache with YaST”, Apache is started at boot
 time in the multi-user.target and
 graphical.target. You can change this behavior
 using YaST's Services Manager or with the
 systemctl command line tool (systemctl
 enable or systemctl disable).

 To start, stop, or manipulate Apache on a running system, use either the
 systemctl or the apachectl commands as
 described below.

 For general information about systemctl commands, refer
 to Section “Managing Services in a Running System”.

	
 systemctl status apache2

	
 Checks if Apache is started.

	
 systemctl start apache2

	
 Starts Apache if it is not already running.

	
 systemctl stop apache2

	
 Stops Apache by terminating the parent process.

	
 systemctl restart apache2

	
 Stops and then restarts Apache. Starts the Web server if it was not
 running before.

	
 systemctl try-restart apache2

	
 Stops then restarts Apache only if it is already running.

	
 systemctl reload apache2

	
 Stops the Web server by advising all forked Apache processes to first
 finish their requests before shutting down. As each process dies, it is
 replaced by a newly started one, resulting in a complete
 “restart” of Apache.

Restarting Apache in Production Environments

 This command allows activating changes in the Apache configuration
 without causing connection break-offs.

	
 systemctl stop apache2

	
 Stops the Web server after a defined period of time configured with
 GracefulShutdownTimeout to ensure that existing
 requests can be finished.

	
 apachectl configtest

	
 Checks the syntax of the configuration files without affecting a running
 Web server. Because this check is forced every time the server is
 started, reloaded, or restarted, it is usually not necessary to run the
 test explicitly (if a configuration error is found, the Web server is not
 started, reloaded, or restarted).

	apachectl status and
 apachectl fullstatus
	
 Dumps a short or full status screen, respectively. Requires the module
 mod_status to be enabled and a text-based
 browser (such as links or w3m) to
 be installed. In addition to that, STATUS must be
 added to APACHE_SERVER_FLAGS in the file
 /etc/sysconfig/apache2.

Additional Flags

 If you specify additional flags to the commands,
 these are passed through to the Web server.

Helpful GRUB 2 Commands

	
 grub2-mkconfig

	
 Generates a new /boot/grub2/grub.cfg based on
 /etc/default/grub and the scripts from
 /etc/grub.d/.

Example 12.1. Usage of grub2-mkconfig
grub2-mkconfig -o /boot/grub2/grub.cfg

Syntax Check

 Running grub2-mkconfig without any parameters prints
 the configuration to STDOUT where it can be reviewed. Use

 grub2-script-check
 after
 /boot/grub2/grub.cfg has been written to check its
 syntax.

grub2-mkconfig Cannot Repair UEFI Secure Boot Tables

 If you are using UEFI Secure Boot and your system is not reaching GRUB 2
 correctly anymore, you may need to additionally reinstall Shim and
 regenerate the UEFI boot table. To do so, use:

root # shim-install --config-file=/boot/grub2/grub.cfg

	
 grub2-mkrescue

	
 Creates a bootable rescue image of your installed GRUB 2 configuration.

Example 12.2. Usage of grub2-mkrescue
grub2-mkrescue -o save_path/name.iso iso

	
 grub2-script-check

	
 Checks the given file for syntax errors.

Example 12.3. Usage of grub2-script-check
grub2-script-check /boot/grub2/grub.cfg

	
 grub2-once

	
 Set the default boot entry for the next boot only. To get the list of
 available boot entries use the --list option.

Example 12.4. Usage of grub2-once
grub2-once number_of_the_boot_entry

grub2-once Help

 Call the program without any option to get a full list of all possible
 options.

For More Information

 For more information about the FTP server read the manual pages of
 vsftpd and vsftpd.conf.

Filtering the Journal Output

 When called without switches, journalctl shows the full
 content of the journal, the oldest entries listed first. The output can be
 filtered by specific switches and fields.

Filtering Based on a Boot Number

journalctl can filter messages based on a specific
 system boot. To list all available boots, run

tux > sudo journalctl --list-boots
-1 097ed2cd99124a2391d2cffab1b566f0 Mon 2014-05-26 08:36:56 EDT—Fri 2014-05-30 05:33:44 EDT
 0 156019a44a774a0bb0148a92df4af81b Fri 2014-05-30 05:34:09 EDT—Fri 2014-05-30 06:15:01 EDT

 The first column lists the boot offset: 0 for the
 current boot, -1 for the previous one,
 -2 for the one prior to that, etc. The second column
 contains the boot ID followed by the limiting time stamps of the specific
 boot.

 Show all messages from the current boot:

tux > sudo journalctl -b

 If you need to see journal messages from the previous boot, add an offset
 parameter. The following example outputs the previous boot messages:

tux > sudo journalctl -b -1

 Another way is to list boot messages based on the boot ID. For this
 purpose, use the _BOOT_ID field:

tux > sudo journalctl _BOOT_ID=156019a44a774a0bb0148a92df4af81b

Filtering Based on Time Interval

 You can filter the output of journalctl by specifying
 the starting and/or ending date. The date specification should be of the
 format "2014-06-30 9:17:16". If the time part is omitted, midnight is
 assumed. If seconds are omitted, ":00" is assumed. If the date part is
 omitted, the current day is assumed. Instead of numeric expression, you can
 specify the keywords "yesterday", "today", or "tomorrow". They refer to
 midnight of the day before the current day, of the current day, or of the
 day after the current day. If you specify "now", it refers to the current
 time. You can also specify relative times prefixed with
 - or +, referring to times before or
 after the current time.

 Show only new messages since now, and update the output continuously:

tux > sudo journalctl --since "now" -f

 Show all messages since last midnight till 3:20am:

tux > sudo journalctl --since "today" --until "3:20"

Filtering Based on Fields

 You can filter the output of the journal by specific fields. The syntax of
 a field to be matched is FIELD_NAME=MATCHED_VALUE, such
 as _SYSTEMD_UNIT=httpd.service. You can specify multiple
 matches in a single query to filter the output messages even more. See
 man 7 systemd.journal-fields for a list of default
 fields.

 Show messages produced by a specific process ID:

tux > sudo journalctl _PID=1039

 Show messages belonging to a specific user ID:

journalctl _UID=1000

 Show messages from the kernel ring buffer (the same as
 dmesg produces):

tux > sudo journalctl _TRANSPORT=kernel

 Show messages from the service's standard or error output:

tux > sudo journalctl _TRANSPORT=stdout

 Show messages produced by a specified service only:

tux > sudo journalctl _SYSTEMD_UNIT=avahi-daemon.service

 If two different fields are specified, only entries that match both
 expressions at the same time are shown:

tux > sudo journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=1488

 If two matches refer to the same field, all entries matching either
 expression are shown:

tux > sudo journalctl _SYSTEMD_UNIT=avahi-daemon.service _SYSTEMD_UNIT=dbus.service

 You can use the '+' separator to combine two expressions in a logical 'OR'.
 The following example shows all messages from the Avahi service process
 with the process ID 1480 together with all messages from the D-Bus service:

tux > sudo journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=1480 + _SYSTEMD_UNIT=dbus.service

The DHCP Server dhcpd

 The core of any DHCP system is the dynamic host configuration protocol
 daemon. This server leases addresses and watches how
 they are used, according to the settings defined in the configuration file
 /etc/dhcpd.conf. By changing the parameters and values
 in this file, a system administrator can influence the program's behavior in
 numerous ways. Look at the basic sample /etc/dhcpd.conf
 file in Example 20.1, “The Configuration File /etc/dhcpd.conf”.

Example 20.1. The Configuration File /etc/dhcpd.conf

default-lease-time 600; # 10 minutes
max-lease-time 7200; # 2 hours

option domain-name "example.com";
option domain-name-servers 192.168.1.116;
option broadcast-address 192.168.2.255;
option routers 192.168.2.1;
option subnet-mask 255.255.255.0;

subnet 192.168.2.0 netmask 255.255.255.0
 {
 range 192.168.2.10 192.168.2.20;
 range 192.168.2.100 192.168.2.200;
 }

 This simple configuration file should be sufficient to get the DHCP server
 to assign IP addresses in the network. Make sure that a semicolon is
 inserted at the end of each line, because otherwise dhcpd is not started.

 The sample file can be divided into three sections. The first one defines
 how many seconds an IP address is leased to a requesting client by default
 (default-lease-time) before it should apply for renewal.
 This section also includes a statement of the maximum period for which a
 machine may keep an IP address assigned by the DHCP server without applying
 for renewal (max-lease-time).

 In the second part, some basic network parameters are defined on a global
 level:

	
 The line option domain-name defines the default domain
 of your network.

	
 With the entry option domain-name-servers, specify up
 to three values for the DNS servers used to resolve IP addresses into host
 names and vice versa. Ideally, configure a name server on your machine or
 somewhere else in your network before setting up DHCP. That name server
 should also define a host name for each dynamic address and vice versa. To
 learn how to configure your own name server, read
 Chapter 19, The Domain Name System.

	
 The line option broadcast-address defines the broadcast
 address the requesting client should use.

	
 With option routers, set where the server should send
 data packets that cannot be delivered to a host on the local network
 (according to the source and target host address and the subnet mask
 provided). Usually, especially in smaller networks, this router is
 identical to the Internet gateway.

	
 With option subnet-mask, specify the netmask assigned
 to clients.

 The last section of the file defines a network, including a subnet mask. To
 finish, specify the address range that the DHCP daemon should use to assign
 IP addresses to interested clients. In Example 20.1, “The Configuration File /etc/dhcpd.conf”,
 clients may be given any address between 192.168.2.10
 and 192.168.2.20 or 192.168.2.100
 and 192.168.2.200.

 After editing these few lines, you should be able to activate the DHCP
 daemon with the command systemctl start dhcpd. It will be
 ready for use immediately. Use the command
 rcdhcpd check-syntax

 to perform a brief syntax check. If you encounter any unexpected problems
 with your configuration (the server aborts with an error or does not return
 done on start), you should be able to find out what has
 gone wrong by looking for information either in the main system log that can
 be queried with the command journalctl (see
 Chapter 11, journalctl: Query the systemd Journal for more information).

 On a default openSUSE Leap system, the DHCP daemon is started in a chroot
 environment for security reasons. The configuration files must be copied to
 the chroot environment so the daemon can find them. Normally, there is no
 need to worry about this because the command systemctl start dhcpd
 automatically copies the files.

Clients with Fixed IP Addresses

 DHCP can also be used to assign a predefined, static address to a specific
 client. Addresses assigned explicitly always take priority over dynamic
 addresses from the pool. A static address never expires in the way a
 dynamic address would, for example, if there were not enough addresses
 available and the server needed to redistribute them among clients.

 To identify a client configured with a static address, dhcpd uses the
 hardware address (which is a globally unique, fixed numerical code
 consisting of six octet pairs) for the identification of all network
 devices (for example, 00:30:6E:08:EC:80). If the respective
 lines, like the ones in Example 20.2, “Additions to the Configuration File”, are added to
 the configuration file of Example 20.1, “The Configuration File /etc/dhcpd.conf”, the DHCP daemon
 always assigns the same set of data to the corresponding client.

Example 20.2. Additions to the Configuration File
host jupiter {
hardware ethernet 00:30:6E:08:EC:80;
fixed-address 192.168.2.100;
}

 The name of the respective client (hostHOSTNAME, here jupiter)
 is entered in the first line and the MAC address in the second line. On
 Linux hosts, find the MAC address with the command iplink show followed by the network device (for example,
 eth0). The output should contain something like

link/ether 00:30:6E:08:EC:80

 In the preceding example, a client with a network card having the MAC
 address 00:30:6E:08:EC:80 is assigned the IP address
 192.168.2.100 and the host name
 jupiter automatically. The type of hardware to enter is
 ethernet in nearly all cases, although
 token-ring, which is often found on IBM systems, is also
 supported.

The openSUSE Leap Version

 To improve security, the openSUSE Leap version of the ISC's DHCP server
 comes with the non-root/chroot patch by Ari Edelkind applied. This enables
 dhcpd to run with the user ID
 nobody and run in a chroot
 environment (/var/lib/dhcp). To make this possible,
 the configuration file dhcpd.conf must be located in
 /var/lib/dhcp/etc. The init script automatically
 copies the file to this directory when starting.

 Control the server's behavior regarding this feature by means of entries in
 the file /etc/sysconfig/dhcpd. To run dhcpd without
 the chroot environment, set the variable
 DHCPD_RUN_CHROOTED in
 /etc/sysconfig/dhcpd to “no”.

 To enable dhcpd to resolve host names even from within the chroot
 environment, some other configuration files must be copied as well:

	
 /etc/localtime

	
 /etc/host.conf

	
 /etc/hosts

	
 /var/run/netconfig/resolv.conf

 These files are copied to /var/lib/dhcp/etc/ when
 starting the init script. Take these copies into account for any changes
 that they require if they are dynamically modified by scripts like
 /etc/ppp/ip-up. However, there should be no need to
 worry about this if the configuration file only specifies IP addresses
 (instead of host names).

 If your configuration includes additional files that should be copied into
 the chroot environment, set these under the variable
 DHCPD_CONF_INCLUDE_FILES in the file
 /etc/sysconfig/dhcpd. To ensure that the DHCP logging
 facility keeps working even after a restart of the syslog daemon, there is
 an additional entry SYSLOGD_ADDITIONAL_SOCKET_DHCP
 in the file /etc/sysconfig/syslog.

