sha2.c

Go to the documentation of this file.
00001 /*
00002  * FILE:        sha2.c
00003  * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
00004  * 
00005  * Copyright (c) 2000-2001, Aaron D. Gifford
00006  * All rights reserved.
00007  *
00008  * Redistribution and use in source and binary forms, with or without
00009  * modification, are permitted provided that the following conditions
00010  * are met:
00011  * 1. Redistributions of source code must retain the above copyright
00012  *    notice, this list of conditions and the following disclaimer.
00013  * 2. Redistributions in binary form must reproduce the above copyright
00014  *    notice, this list of conditions and the following disclaimer in the
00015  *    documentation and/or other materials provided with the distribution.
00016  * 3. Neither the name of the copyright holder nor the names of contributors
00017  *    may be used to endorse or promote products derived from this software
00018  *    without specific prior written permission.
00019  * 
00020  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
00021  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00022  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00023  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
00024  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
00025  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
00026  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00027  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00028  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
00029  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
00030  * SUCH DAMAGE.
00031  *
00032  * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
00033  */
00034 
00035 #include <sys/types.h>
00036 #include <string.h>     /* memcpy()/memset() or bcopy()/bzero() */
00037 /* #include <assert.h> */   /* assert() */
00038 #include <stdio.h>
00039 #include <sysexits.h>
00040 #include <sys/uio.h>
00041 #include <unistd.h>
00042 #include <inttypes.h>
00043 #include <endian.h>
00044 
00045 #include "sha2.h"
00046 
00047 
00048 /*
00049  * ASSERT NOTE:
00050  * Some sanity checking code is included using assert().  On my FreeBSD
00051  * system, this additional code can be removed by compiling with NDEBUG
00052  * defined.  Check your own systems manpage on assert() to see how to
00053  * compile WITHOUT the sanity checking code on your system.
00054  *
00055  * UNROLLED TRANSFORM LOOP NOTE:
00056  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
00057  * loop version for the hash transform rounds (defined using macros
00058  * later in this file).  Either define on the command line, for example:
00059  *
00060  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
00061  *
00062  * or define below:
00063  *
00064  *   #define SHA2_UNROLL_TRANSFORM
00065  *
00066  */
00067 
00068  #define SHA2_UNROLL_TRANSFORM
00069 
00070 
00071 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
00072 /*
00073  * BYTE_ORDER NOTE:
00074  *
00075  * Please make sure that your system defines BYTE_ORDER.  If your
00076  * architecture is little-endian, make sure it also defines
00077  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
00078  * equivilent.
00079  *
00080  * If your system does not define the above, then you can do so by
00081  * hand like this:
00082  *
00083  *   #define LITTLE_ENDIAN 1234
00084  *   #define BIG_ENDIAN    4321
00085  *
00086  * And for little-endian machines, add:
00087  *
00088  *   #define BYTE_ORDER LITTLE_ENDIAN 
00089  *
00090  * Or for big-endian machines:
00091  *
00092  *   #define BYTE_ORDER BIG_ENDIAN
00093  *
00094  * The FreeBSD machine this was written on defines BYTE_ORDER
00095  * appropriately by including <sys/types.h> (which in turn includes
00096  * <machine/endian.h> where the appropriate definitions are actually
00097  * made).
00098  */
00099 #if !defined(__BYTE_ORDER) || (__BYTE_ORDER != __LITTLE_ENDIAN && __BYTE_ORDER != __BIG_ENDIAN)
00100 #error Define __BYTE_ORDER to be equal to either __LITTLE_ENDIAN or __BIG_ENDIAN
00101 #endif
00102 
00103 /*
00104  * Define the following sha2_* types to types of the correct length on
00105  * the native archtecture.   Most BSD systems and Linux define u_intXX_t
00106  * types.  Machines with very recent ANSI C headers, can use the
00107  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
00108  * during compile or in the sha.h header file.
00109  *
00110  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
00111  * will need to define these three typedefs below (and the appropriate
00112  * ones in sha.h too) by hand according to their system architecture.
00113  *
00114  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
00115  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
00116  */
00117 typedef uint8_t  sha2_byte;     /* Exactly 1 byte */
00118 typedef uint32_t sha2_word32;   /* Exactly 4 bytes */
00119 typedef uint64_t sha2_word64;   /* Exactly 8 bytes */
00120 
00121 
00122 /*** SHA-256/384/512 Various Length Definitions ***********************/
00123 /* NOTE: Most of these are in sha2.h */
00124 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
00125 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
00126 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
00127 
00128 
00129 /*** ENDIAN REVERSAL MACROS *******************************************/
00130 #if __BYTE_ORDER == __LITTLE_ENDIAN
00131 #define REVERSE32(w,x)  { \
00132         sha2_word32 tmp = (w); \
00133         tmp = (tmp >> 16) | (tmp << 16); \
00134         (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
00135 }
00136 #define REVERSE64(w,x)  { \
00137         sha2_word64 tmp = (w); \
00138         tmp = (tmp >> 32) | (tmp << 32); \
00139         tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
00140               ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
00141         (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
00142               ((tmp & 0x0000ffff0000ffffULL) << 16); \
00143 }
00144 #endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
00145 
00146 /*
00147  * Macro for incrementally adding the unsigned 64-bit integer n to the
00148  * unsigned 128-bit integer (represented using a two-element array of
00149  * 64-bit words):
00150  */
00151 #define ADDINC128(w,n)  { \
00152         (w)[0] += (sha2_word64)(n); \
00153         if ((w)[0] < (n)) { \
00154                 (w)[1]++; \
00155         } \
00156 }
00157 
00158 /*
00159  * Macros for copying blocks of memory and for zeroing out ranges
00160  * of memory.  Using these macros makes it easy to switch from
00161  * using memset()/memcpy() and using bzero()/bcopy().
00162  *
00163  * Please define either SHA2_USE_MEMSET_MEMCPY or define
00164  * SHA2_USE_BZERO_BCOPY depending on which function set you
00165  * choose to use:
00166  */
00167 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
00168 /* Default to memset()/memcpy() if no option is specified */
00169 #define SHA2_USE_MEMSET_MEMCPY  1
00170 #endif
00171 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
00172 /* Abort with an error if BOTH options are defined */
00173 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
00174 #endif
00175 
00176 #ifdef SHA2_USE_MEMSET_MEMCPY
00177 #define MEMSET_BZERO(p,l)       memset((p), 0, (l))
00178 #define MEMCPY_BCOPY(d,s,l)     memcpy((d), (s), (l))
00179 #endif
00180 #ifdef SHA2_USE_BZERO_BCOPY
00181 #define MEMSET_BZERO(p,l)       bzero((p), (l))
00182 #define MEMCPY_BCOPY(d,s,l)     bcopy((s), (d), (l))
00183 #endif
00184 
00185 
00186 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
00187 /*
00188  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
00189  *
00190  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
00191  *   S is a ROTATION) because the SHA-256/384/512 description document
00192  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
00193  *   same "backwards" definition.
00194  */
00195 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
00196 #define R(b,x)          ((x) >> (b))
00197 /* 32-bit Rotate-right (used in SHA-256): */
00198 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
00199 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
00200 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
00201 
00202 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
00203 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
00204 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
00205 
00206 /* Four of six logical functions used in SHA-256: */
00207 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
00208 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
00209 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
00210 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
00211 
00212 /* Four of six logical functions used in SHA-384 and SHA-512: */
00213 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
00214 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
00215 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
00216 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
00217 
00218 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
00219 /* NOTE: These should not be accessed directly from outside this
00220  * library -- they are intended for private internal visibility/use
00221  * only.
00222  */
00223 static void SHA512_Last(SHA512_CTX*);
00224 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
00225 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
00226 
00227 
00228 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
00229 /* Hash constant words K for SHA-256: */
00230 const static sha2_word32 K256[64] = {
00231         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
00232         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
00233         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
00234         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
00235         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
00236         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
00237         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
00238         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
00239         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
00240         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
00241         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
00242         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
00243         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
00244         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
00245         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
00246         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
00247 };
00248 
00249 /* Initial hash value H for SHA-256: */
00250 const static sha2_word32 sha256_initial_hash_value[8] = {
00251         0x6a09e667UL,
00252         0xbb67ae85UL,
00253         0x3c6ef372UL,
00254         0xa54ff53aUL,
00255         0x510e527fUL,
00256         0x9b05688cUL,
00257         0x1f83d9abUL,
00258         0x5be0cd19UL
00259 };
00260 
00261 /* Hash constant words K for SHA-384 and SHA-512: */
00262 const static sha2_word64 K512[80] = {
00263         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
00264         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
00265         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
00266         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
00267         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
00268         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
00269         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
00270         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
00271         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
00272         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
00273         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
00274         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
00275         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
00276         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
00277         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
00278         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
00279         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
00280         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
00281         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
00282         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
00283         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
00284         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
00285         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
00286         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
00287         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
00288         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
00289         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
00290         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
00291         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
00292         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
00293         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
00294         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
00295         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
00296         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
00297         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
00298         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
00299         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
00300         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
00301         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
00302         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
00303 };
00304 
00305 /* Initial hash value H for SHA-384 */
00306 const static sha2_word64 sha384_initial_hash_value[8] = {
00307         0xcbbb9d5dc1059ed8ULL,
00308         0x629a292a367cd507ULL,
00309         0x9159015a3070dd17ULL,
00310         0x152fecd8f70e5939ULL,
00311         0x67332667ffc00b31ULL,
00312         0x8eb44a8768581511ULL,
00313         0xdb0c2e0d64f98fa7ULL,
00314         0x47b5481dbefa4fa4ULL
00315 };
00316 
00317 /* Initial hash value H for SHA-512 */
00318 const static sha2_word64 sha512_initial_hash_value[8] = {
00319         0x6a09e667f3bcc908ULL,
00320         0xbb67ae8584caa73bULL,
00321         0x3c6ef372fe94f82bULL,
00322         0xa54ff53a5f1d36f1ULL,
00323         0x510e527fade682d1ULL,
00324         0x9b05688c2b3e6c1fULL,
00325         0x1f83d9abfb41bd6bULL,
00326         0x5be0cd19137e2179ULL
00327 };
00328 
00329 /*
00330  * Constant used by SHA256/384/512_End() functions for converting the
00331  * digest to a readable hexadecimal character string:
00332  */
00333 static const char *sha2_hex_digits = "0123456789abcdef";
00334 
00335 
00336 /*** SHA-256: *********************************************************/
00337 void sat_SHA256_Init(SHA256_CTX* context) {
00338         if (context == (SHA256_CTX*)0) {
00339                 return;
00340         }
00341         MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
00342         MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
00343         context->bitcount = 0;
00344 }
00345 
00346 #ifdef SHA2_UNROLL_TRANSFORM
00347 
00348 /* Unrolled SHA-256 round macros: */
00349 
00350 #if __BYTE_ORDER == __LITTLE_ENDIAN
00351 
00352 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
00353         REVERSE32(*data++, W256[j]); \
00354         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
00355              K256[j] + W256[j]; \
00356         (d) += T1; \
00357         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
00358         j++
00359 
00360 
00361 #else /* __BYTE_ORDER == __LITTLE_ENDIAN */
00362 
00363 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \
00364         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
00365              K256[j] + (W256[j] = *data++); \
00366         (d) += T1; \
00367         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
00368         j++
00369 
00370 #endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
00371 
00372 #define ROUND256(a,b,c,d,e,f,g,h)       \
00373         s0 = W256[(j+1)&0x0f]; \
00374         s0 = sigma0_256(s0); \
00375         s1 = W256[(j+14)&0x0f]; \
00376         s1 = sigma1_256(s1); \
00377         T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
00378              (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
00379         (d) += T1; \
00380         (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
00381         j++
00382 
00383 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
00384         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
00385         sha2_word32     T1, *W256;
00386         int             j;
00387 
00388         W256 = (sha2_word32*)context->buffer;
00389 
00390         /* Initialize registers with the prev. intermediate value */
00391         a = context->state[0];
00392         b = context->state[1];
00393         c = context->state[2];
00394         d = context->state[3];
00395         e = context->state[4];
00396         f = context->state[5];
00397         g = context->state[6];
00398         h = context->state[7];
00399 
00400         j = 0;
00401         do {
00402                 /* Rounds 0 to 15 (unrolled): */
00403                 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
00404                 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
00405                 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
00406                 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
00407                 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
00408                 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
00409                 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
00410                 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
00411         } while (j < 16);
00412 
00413         /* Now for the remaining rounds to 64: */
00414         do {
00415                 ROUND256(a,b,c,d,e,f,g,h);
00416                 ROUND256(h,a,b,c,d,e,f,g);
00417                 ROUND256(g,h,a,b,c,d,e,f);
00418                 ROUND256(f,g,h,a,b,c,d,e);
00419                 ROUND256(e,f,g,h,a,b,c,d);
00420                 ROUND256(d,e,f,g,h,a,b,c);
00421                 ROUND256(c,d,e,f,g,h,a,b);
00422                 ROUND256(b,c,d,e,f,g,h,a);
00423         } while (j < 64);
00424 
00425         /* Compute the current intermediate hash value */
00426         context->state[0] += a;
00427         context->state[1] += b;
00428         context->state[2] += c;
00429         context->state[3] += d;
00430         context->state[4] += e;
00431         context->state[5] += f;
00432         context->state[6] += g;
00433         context->state[7] += h;
00434 
00435         /* Clean up */
00436         a = b = c = d = e = f = g = h = T1 = 0;
00437 }
00438 
00439 #else /* SHA2_UNROLL_TRANSFORM */
00440 
00441 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
00442         sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
00443         sha2_word32     T1, T2, *W256;
00444         int             j;
00445 
00446         W256 = (sha2_word32*)context->buffer;
00447 
00448         /* Initialize registers with the prev. intermediate value */
00449         a = context->state[0];
00450         b = context->state[1];
00451         c = context->state[2];
00452         d = context->state[3];
00453         e = context->state[4];
00454         f = context->state[5];
00455         g = context->state[6];
00456         h = context->state[7];
00457 
00458         j = 0;
00459         do {
00460 #if __BYTE_ORDER == __LITTLE_ENDIAN
00461                 /* Copy data while converting to host byte order */
00462                 REVERSE32(*data++,W256[j]);
00463                 /* Apply the SHA-256 compression function to update a..h */
00464                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
00465 #else /* __BYTE_ORDER == __LITTLE_ENDIAN */
00466                 /* Apply the SHA-256 compression function to update a..h with copy */
00467                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
00468 #endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
00469                 T2 = Sigma0_256(a) + Maj(a, b, c);
00470                 h = g;
00471                 g = f;
00472                 f = e;
00473                 e = d + T1;
00474                 d = c;
00475                 c = b;
00476                 b = a;
00477                 a = T1 + T2;
00478 
00479                 j++;
00480         } while (j < 16);
00481 
00482         do {
00483                 /* Part of the message block expansion: */
00484                 s0 = W256[(j+1)&0x0f];
00485                 s0 = sigma0_256(s0);
00486                 s1 = W256[(j+14)&0x0f]; 
00487                 s1 = sigma1_256(s1);
00488 
00489                 /* Apply the SHA-256 compression function to update a..h */
00490                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
00491                      (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
00492                 T2 = Sigma0_256(a) + Maj(a, b, c);
00493                 h = g;
00494                 g = f;
00495                 f = e;
00496                 e = d + T1;
00497                 d = c;
00498                 c = b;
00499                 b = a;
00500                 a = T1 + T2;
00501 
00502                 j++;
00503         } while (j < 64);
00504 
00505         /* Compute the current intermediate hash value */
00506         context->state[0] += a;
00507         context->state[1] += b;
00508         context->state[2] += c;
00509         context->state[3] += d;
00510         context->state[4] += e;
00511         context->state[5] += f;
00512         context->state[6] += g;
00513         context->state[7] += h;
00514 
00515         /* Clean up */
00516         a = b = c = d = e = f = g = h = T1 = T2 = 0;
00517 }
00518 
00519 #endif /* SHA2_UNROLL_TRANSFORM */
00520 
00521 void sat_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
00522         unsigned int    freespace, usedspace;
00523 
00524         if (len == 0) {
00525                 /* Calling with no data is valid - we do nothing */
00526                 return;
00527         }
00528 
00529         /* Sanity check: */
00530         /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */
00531 
00532         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
00533         if (usedspace > 0) {
00534                 /* Calculate how much free space is available in the buffer */
00535                 freespace = SHA256_BLOCK_LENGTH - usedspace;
00536 
00537                 if (len >= freespace) {
00538                         /* Fill the buffer completely and process it */
00539                         MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
00540                         context->bitcount += freespace << 3;
00541                         len -= freespace;
00542                         data += freespace;
00543                         SHA256_Transform(context, (sha2_word32*)context->buffer);
00544                 } else {
00545                         /* The buffer is not yet full */
00546                         MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
00547                         context->bitcount += len << 3;
00548                         /* Clean up: */
00549                         usedspace = freespace = 0;
00550                         return;
00551                 }
00552         }
00553         while (len >= SHA256_BLOCK_LENGTH) {
00554                 /* Process as many complete blocks as we can */
00555                 SHA256_Transform(context, (sha2_word32*)data);
00556                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
00557                 len -= SHA256_BLOCK_LENGTH;
00558                 data += SHA256_BLOCK_LENGTH;
00559         }
00560         if (len > 0) {
00561                 /* There's left-overs, so save 'em */
00562                 MEMCPY_BCOPY(context->buffer, data, len);
00563                 context->bitcount += len << 3;
00564         }
00565         /* Clean up: */
00566         usedspace = freespace = 0;
00567 }
00568 
00569 void sat_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
00570         sha2_word32     *d = (sha2_word32*)digest;
00571         unsigned int    usedspace;
00572 
00573         /* Sanity check: */
00574         /* assert(context != (SHA256_CTX*)0); */
00575 
00576         /* If no digest buffer is passed, we don't bother doing this: */
00577         if (digest != (sha2_byte*)0) {
00578                 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
00579 #if __BYTE_ORDER == __LITTLE_ENDIAN
00580                 /* Convert FROM host byte order */
00581                 REVERSE64(context->bitcount,context->bitcount);
00582 #endif
00583                 if (usedspace > 0) {
00584                         /* Begin padding with a 1 bit: */
00585                         context->buffer[usedspace++] = 0x80;
00586 
00587                         if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
00588                                 /* Set-up for the last transform: */
00589                                 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
00590                         } else {
00591                                 if (usedspace < SHA256_BLOCK_LENGTH) {
00592                                         MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
00593                                 }
00594                                 /* Do second-to-last transform: */
00595                                 SHA256_Transform(context, (sha2_word32*)context->buffer);
00596 
00597                                 /* And set-up for the last transform: */
00598                                 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
00599                         }
00600                 } else {
00601                         /* Set-up for the last transform: */
00602                         MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
00603 
00604                         /* Begin padding with a 1 bit: */
00605                         *context->buffer = 0x80;
00606                 }
00607                 /* Set the bit count: */
00608                 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
00609 
00610                 /* Final transform: */
00611                 SHA256_Transform(context, (sha2_word32*)context->buffer);
00612 
00613 #if __BYTE_ORDER == __LITTLE_ENDIAN
00614                 {
00615                         /* Convert TO host byte order */
00616                         int     j;
00617                         for (j = 0; j < 8; j++) {
00618                                 REVERSE32(context->state[j],context->state[j]);
00619                                 *d++ = context->state[j];
00620                         }
00621                 }
00622 #else
00623                 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
00624 #endif
00625         }
00626 
00627         /* Clean up state data: */
00628         MEMSET_BZERO(context, sizeof(context));
00629         usedspace = 0;
00630 }
00631 
00632 char *sat_SHA256_End(SHA256_CTX* context, char buffer[]) {
00633         sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
00634         int             i;
00635 
00636         /* Sanity check: */
00637         /* assert(context != (SHA256_CTX*)0); */
00638 
00639         if (buffer != (char*)0) {
00640                 sat_SHA256_Final(digest, context);
00641 
00642                 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
00643                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
00644                         *buffer++ = sha2_hex_digits[*d & 0x0f];
00645                         d++;
00646                 }
00647                 *buffer = (char)0;
00648         } else {
00649                 MEMSET_BZERO(context, sizeof(context));
00650         }
00651         MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
00652         return buffer;
00653 }
00654 
00655 char* sat_SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
00656         SHA256_CTX      context;
00657 
00658         sat_SHA256_Init(&context);
00659         sat_SHA256_Update(&context, data, len);
00660         return sat_SHA256_End(&context, digest);
00661 }
00662 
00663 
00664 /*** SHA-512: *********************************************************/
00665 void sat_SHA512_Init(SHA512_CTX* context) {
00666         if (context == (SHA512_CTX*)0) {
00667                 return;
00668         }
00669         MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
00670         MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
00671         context->bitcount[0] = context->bitcount[1] =  0;
00672 }
00673 
00674 #ifdef SHA2_UNROLL_TRANSFORM
00675 
00676 /* Unrolled SHA-512 round macros: */
00677 #if __BYTE_ORDER == __LITTLE_ENDIAN
00678 
00679 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
00680         REVERSE64(*data++, W512[j]); \
00681         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
00682              K512[j] + W512[j]; \
00683         (d) += T1, \
00684         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
00685         j++
00686 
00687 
00688 #else /* __BYTE_ORDER == __LITTLE_ENDIAN */
00689 
00690 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)       \
00691         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
00692              K512[j] + (W512[j] = *data++); \
00693         (d) += T1; \
00694         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
00695         j++
00696 
00697 #endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
00698 
00699 #define ROUND512(a,b,c,d,e,f,g,h)       \
00700         s0 = W512[(j+1)&0x0f]; \
00701         s0 = sigma0_512(s0); \
00702         s1 = W512[(j+14)&0x0f]; \
00703         s1 = sigma1_512(s1); \
00704         T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
00705              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
00706         (d) += T1; \
00707         (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
00708         j++
00709 
00710 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
00711         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
00712         sha2_word64     T1, *W512 = (sha2_word64*)context->buffer;
00713         int             j;
00714 
00715         /* Initialize registers with the prev. intermediate value */
00716         a = context->state[0];
00717         b = context->state[1];
00718         c = context->state[2];
00719         d = context->state[3];
00720         e = context->state[4];
00721         f = context->state[5];
00722         g = context->state[6];
00723         h = context->state[7];
00724 
00725         j = 0;
00726         do {
00727                 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
00728                 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
00729                 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
00730                 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
00731                 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
00732                 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
00733                 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
00734                 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
00735         } while (j < 16);
00736 
00737         /* Now for the remaining rounds up to 79: */
00738         do {
00739                 ROUND512(a,b,c,d,e,f,g,h);
00740                 ROUND512(h,a,b,c,d,e,f,g);
00741                 ROUND512(g,h,a,b,c,d,e,f);
00742                 ROUND512(f,g,h,a,b,c,d,e);
00743                 ROUND512(e,f,g,h,a,b,c,d);
00744                 ROUND512(d,e,f,g,h,a,b,c);
00745                 ROUND512(c,d,e,f,g,h,a,b);
00746                 ROUND512(b,c,d,e,f,g,h,a);
00747         } while (j < 80);
00748 
00749         /* Compute the current intermediate hash value */
00750         context->state[0] += a;
00751         context->state[1] += b;
00752         context->state[2] += c;
00753         context->state[3] += d;
00754         context->state[4] += e;
00755         context->state[5] += f;
00756         context->state[6] += g;
00757         context->state[7] += h;
00758 
00759         /* Clean up */
00760         a = b = c = d = e = f = g = h = T1 = 0;
00761 }
00762 
00763 #else /* SHA2_UNROLL_TRANSFORM */
00764 
00765 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
00766         sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
00767         sha2_word64     T1, T2, *W512 = (sha2_word64*)context->buffer;
00768         int             j;
00769 
00770         /* Initialize registers with the prev. intermediate value */
00771         a = context->state[0];
00772         b = context->state[1];
00773         c = context->state[2];
00774         d = context->state[3];
00775         e = context->state[4];
00776         f = context->state[5];
00777         g = context->state[6];
00778         h = context->state[7];
00779 
00780         j = 0;
00781         do {
00782 #if __BYTE_ORDER == __LITTLE_ENDIAN
00783                 /* Convert TO host byte order */
00784                 REVERSE64(*data++, W512[j]);
00785                 /* Apply the SHA-512 compression function to update a..h */
00786                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
00787 #else /* __BYTE_ORDER == __LITTLE_ENDIAN */
00788                 /* Apply the SHA-512 compression function to update a..h with copy */
00789                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
00790 #endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
00791                 T2 = Sigma0_512(a) + Maj(a, b, c);
00792                 h = g;
00793                 g = f;
00794                 f = e;
00795                 e = d + T1;
00796                 d = c;
00797                 c = b;
00798                 b = a;
00799                 a = T1 + T2;
00800 
00801                 j++;
00802         } while (j < 16);
00803 
00804         do {
00805                 /* Part of the message block expansion: */
00806                 s0 = W512[(j+1)&0x0f];
00807                 s0 = sigma0_512(s0);
00808                 s1 = W512[(j+14)&0x0f];
00809                 s1 =  sigma1_512(s1);
00810 
00811                 /* Apply the SHA-512 compression function to update a..h */
00812                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
00813                      (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
00814                 T2 = Sigma0_512(a) + Maj(a, b, c);
00815                 h = g;
00816                 g = f;
00817                 f = e;
00818                 e = d + T1;
00819                 d = c;
00820                 c = b;
00821                 b = a;
00822                 a = T1 + T2;
00823 
00824                 j++;
00825         } while (j < 80);
00826 
00827         /* Compute the current intermediate hash value */
00828         context->state[0] += a;
00829         context->state[1] += b;
00830         context->state[2] += c;
00831         context->state[3] += d;
00832         context->state[4] += e;
00833         context->state[5] += f;
00834         context->state[6] += g;
00835         context->state[7] += h;
00836 
00837         /* Clean up */
00838         a = b = c = d = e = f = g = h = T1 = T2 = 0;
00839 }
00840 
00841 #endif /* SHA2_UNROLL_TRANSFORM */
00842 
00843 void sat_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
00844         unsigned int    freespace, usedspace;
00845 
00846         if (len == 0) {
00847                 /* Calling with no data is valid - we do nothing */
00848                 return;
00849         }
00850 
00851         /* Sanity check: */
00852         /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */
00853 
00854         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
00855         if (usedspace > 0) {
00856                 /* Calculate how much free space is available in the buffer */
00857                 freespace = SHA512_BLOCK_LENGTH - usedspace;
00858 
00859                 if (len >= freespace) {
00860                         /* Fill the buffer completely and process it */
00861                         MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
00862                         ADDINC128(context->bitcount, freespace << 3);
00863                         len -= freespace;
00864                         data += freespace;
00865                         SHA512_Transform(context, (sha2_word64*)context->buffer);
00866                 } else {
00867                         /* The buffer is not yet full */
00868                         MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
00869                         ADDINC128(context->bitcount, len << 3);
00870                         /* Clean up: */
00871                         usedspace = freespace = 0;
00872                         return;
00873                 }
00874         }
00875         while (len >= SHA512_BLOCK_LENGTH) {
00876                 /* Process as many complete blocks as we can */
00877                 SHA512_Transform(context, (sha2_word64*)data);
00878                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
00879                 len -= SHA512_BLOCK_LENGTH;
00880                 data += SHA512_BLOCK_LENGTH;
00881         }
00882         if (len > 0) {
00883                 /* There's left-overs, so save 'em */
00884                 MEMCPY_BCOPY(context->buffer, data, len);
00885                 ADDINC128(context->bitcount, len << 3);
00886         }
00887         /* Clean up: */
00888         usedspace = freespace = 0;
00889 }
00890 
00891 static void SHA512_Last(SHA512_CTX* context) {
00892         unsigned int    usedspace;
00893 
00894         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
00895 #if __BYTE_ORDER == __LITTLE_ENDIAN
00896         /* Convert FROM host byte order */
00897         REVERSE64(context->bitcount[0],context->bitcount[0]);
00898         REVERSE64(context->bitcount[1],context->bitcount[1]);
00899 #endif
00900         if (usedspace > 0) {
00901                 /* Begin padding with a 1 bit: */
00902                 context->buffer[usedspace++] = 0x80;
00903 
00904                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
00905                         /* Set-up for the last transform: */
00906                         MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
00907                 } else {
00908                         if (usedspace < SHA512_BLOCK_LENGTH) {
00909                                 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
00910                         }
00911                         /* Do second-to-last transform: */
00912                         SHA512_Transform(context, (sha2_word64*)context->buffer);
00913 
00914                         /* And set-up for the last transform: */
00915                         MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
00916                 }
00917         } else {
00918                 /* Prepare for final transform: */
00919                 MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
00920 
00921                 /* Begin padding with a 1 bit: */
00922                 *context->buffer = 0x80;
00923         }
00924         /* Store the length of input data (in bits): */
00925         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
00926         *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
00927 
00928         /* Final transform: */
00929         SHA512_Transform(context, (sha2_word64*)context->buffer);
00930 }
00931 
00932 void sat_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
00933         sha2_word64     *d = (sha2_word64*)digest;
00934 
00935         /* Sanity check: */
00936         /* assert(context != (SHA512_CTX*)0); */
00937 
00938         /* If no digest buffer is passed, we don't bother doing this: */
00939         if (digest != (sha2_byte*)0) {
00940                 SHA512_Last(context);
00941 
00942                 /* Save the hash data for output: */
00943 #if __BYTE_ORDER == __LITTLE_ENDIAN
00944                 {
00945                         /* Convert TO host byte order */
00946                         int     j;
00947                         for (j = 0; j < 8; j++) {
00948                                 REVERSE64(context->state[j],context->state[j]);
00949                                 *d++ = context->state[j];
00950                         }
00951                 }
00952 #else
00953                 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
00954 #endif
00955         }
00956 
00957         /* Zero out state data */
00958         MEMSET_BZERO(context, sizeof(context));
00959 }
00960 
00961 char *sat_SHA512_End(SHA512_CTX* context, char buffer[]) {
00962         sha2_byte       digest[SHA512_DIGEST_LENGTH], *d = digest;
00963         int             i;
00964 
00965         /* Sanity check: */
00966         /* assert(context != (SHA512_CTX*)0); */
00967 
00968         if (buffer != (char*)0) {
00969                 sat_SHA512_Final(digest, context);
00970 
00971                 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
00972                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
00973                         *buffer++ = sha2_hex_digits[*d & 0x0f];
00974                         d++;
00975                 }
00976                 *buffer = (char)0;
00977         } else {
00978                 MEMSET_BZERO(context, sizeof(context));
00979         }
00980         MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
00981         return buffer;
00982 }
00983 
00984 char* sat_SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
00985         SHA512_CTX      context;
00986 
00987         sat_SHA512_Init(&context);
00988         sat_SHA512_Update(&context, data, len);
00989         return sat_SHA512_End(&context, digest);
00990 }
00991 
00992 
00993 /*** SHA-384: *********************************************************/
00994 void sat_SHA384_Init(SHA384_CTX* context) {
00995         if (context == (SHA384_CTX*)0) {
00996                 return;
00997         }
00998         MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
00999         MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
01000         context->bitcount[0] = context->bitcount[1] = 0;
01001 }
01002 
01003 void sat_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
01004         sat_SHA512_Update((SHA512_CTX*)context, data, len);
01005 }
01006 
01007 void sat_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
01008         sha2_word64     *d = (sha2_word64*)digest;
01009 
01010         /* Sanity check: */
01011         /* assert(context != (SHA384_CTX*)0); */
01012 
01013         /* If no digest buffer is passed, we don't bother doing this: */
01014         if (digest != (sha2_byte*)0) {
01015                 SHA512_Last((SHA512_CTX*)context);
01016 
01017                 /* Save the hash data for output: */
01018 #if __BYTE_ORDER == __LITTLE_ENDIAN
01019                 {
01020                         /* Convert TO host byte order */
01021                         int     j;
01022                         for (j = 0; j < 6; j++) {
01023                                 REVERSE64(context->state[j],context->state[j]);
01024                                 *d++ = context->state[j];
01025                         }
01026                 }
01027 #else
01028                 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
01029 #endif
01030         }
01031 
01032         /* Zero out state data */
01033         MEMSET_BZERO(context, sizeof(context));
01034 }
01035 
01036 char *sat_SHA384_End(SHA384_CTX* context, char buffer[]) {
01037         sha2_byte       digest[SHA384_DIGEST_LENGTH], *d = digest;
01038         int             i;
01039 
01040         /* Sanity check: */
01041         /* assert(context != (SHA384_CTX*)0); */
01042 
01043         if (buffer != (char*)0) {
01044                 sat_SHA384_Final(digest, context);
01045 
01046                 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
01047                         *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
01048                         *buffer++ = sha2_hex_digits[*d & 0x0f];
01049                         d++;
01050                 }
01051                 *buffer = (char)0;
01052         } else {
01053                 MEMSET_BZERO(context, sizeof(context));
01054         }
01055         MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
01056         return buffer;
01057 }
01058 
01059 char* sat_SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
01060         SHA384_CTX      context;
01061 
01062         sat_SHA384_Init(&context);
01063         sat_SHA384_Update(&context, data, len);
01064         return sat_SHA384_End(&context, digest);
01065 }

doxygen