satsolver  0.17.2
sha2.c
Go to the documentation of this file.
1 /*
2  * FILE: sha2.c
3  * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
4  *
5  * Copyright (c) 2000-2001, Aaron D. Gifford
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  * notice, this list of conditions and the following disclaimer in the
15  * documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the copyright holder nor the names of contributors
17  * may be used to endorse or promote products derived from this software
18  * without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
33  */
34 
35 #include <sys/types.h>
36 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
37 /* #include <assert.h> */ /* assert() */
38 #include <stdio.h>
39 #include <sysexits.h>
40 #include <sys/uio.h>
41 #include <unistd.h>
42 #include <inttypes.h>
43 
44 #include "sha2.h"
45 
46 
47 /*
48  * ASSERT NOTE:
49  * Some sanity checking code is included using assert(). On my FreeBSD
50  * system, this additional code can be removed by compiling with NDEBUG
51  * defined. Check your own systems manpage on assert() to see how to
52  * compile WITHOUT the sanity checking code on your system.
53  *
54  * UNROLLED TRANSFORM LOOP NOTE:
55  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
56  * loop version for the hash transform rounds (defined using macros
57  * later in this file). Either define on the command line, for example:
58  *
59  * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
60  *
61  * or define below:
62  *
63  * #define SHA2_UNROLL_TRANSFORM
64  *
65  */
66 
67  #define SHA2_UNROLL_TRANSFORM
68 
69 
70 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
71 /*
72  * BYTE_ORDER NOTE:
73  *
74  * Please make sure that your system defines BYTE_ORDER. If your
75  * architecture is little-endian, make sure it also defines
76  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
77  * equivilent.
78  *
79  * If your system does not define the above, then you can do so by
80  * hand like this:
81  *
82  * #define LITTLE_ENDIAN 1234
83  * #define BIG_ENDIAN 4321
84  *
85  * And for little-endian machines, add:
86  *
87  * #define BYTE_ORDER LITTLE_ENDIAN
88  *
89  * Or for big-endian machines:
90  *
91  * #define BYTE_ORDER BIG_ENDIAN
92  *
93  * The FreeBSD machine this was written on defines BYTE_ORDER
94  * appropriately by including <sys/types.h> (which in turn includes
95  * <machine/endian.h> where the appropriate definitions are actually
96  * made).
97  */
98 
99 /*
100  * Define the following sha2_* types to types of the correct length on
101  * the native archtecture. Most BSD systems and Linux define u_intXX_t
102  * types. Machines with very recent ANSI C headers, can use the
103  * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
104  * during compile or in the sha.h header file.
105  *
106  * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
107  * will need to define these three typedefs below (and the appropriate
108  * ones in sha.h too) by hand according to their system architecture.
109  *
110  * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
111  * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
112  */
113 typedef uint8_t sha2_byte; /* Exactly 1 byte */
114 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
115 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
116 
117 
118 /*** SHA-256/384/512 Various Length Definitions ***********************/
119 /* NOTE: Most of these are in sha2.h */
120 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
121 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
122 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
123 
124 
125 /*** ENDIAN REVERSAL MACROS *******************************************/
126 #ifndef WORDS_BIGENDIAN
127 #define REVERSE32(w,x) { \
128  sha2_word32 tmp = (w); \
129  tmp = (tmp >> 16) | (tmp << 16); \
130  (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
131 }
132 #define REVERSE64(w,x) { \
133  sha2_word64 tmp = (w); \
134  tmp = (tmp >> 32) | (tmp << 32); \
135  tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
136  ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
137  (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
138  ((tmp & 0x0000ffff0000ffffULL) << 16); \
139 }
140 #endif /* !WORDS_BIGENDIAN */
141 
142 /*
143  * Macro for incrementally adding the unsigned 64-bit integer n to the
144  * unsigned 128-bit integer (represented using a two-element array of
145  * 64-bit words):
146  */
147 #define ADDINC128(w,n) { \
148  (w)[0] += (sha2_word64)(n); \
149  if ((w)[0] < (n)) { \
150  (w)[1]++; \
151  } \
152 }
153 
154 /*
155  * Macros for copying blocks of memory and for zeroing out ranges
156  * of memory. Using these macros makes it easy to switch from
157  * using memset()/memcpy() and using bzero()/bcopy().
158  *
159  * Please define either SHA2_USE_MEMSET_MEMCPY or define
160  * SHA2_USE_BZERO_BCOPY depending on which function set you
161  * choose to use:
162  */
163 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
164 /* Default to memset()/memcpy() if no option is specified */
165 #define SHA2_USE_MEMSET_MEMCPY 1
166 #endif
167 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
168 /* Abort with an error if BOTH options are defined */
169 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
170 #endif
171 
172 #ifdef SHA2_USE_MEMSET_MEMCPY
173 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
174 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
175 #endif
176 #ifdef SHA2_USE_BZERO_BCOPY
177 #define MEMSET_BZERO(p,l) bzero((p), (l))
178 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
179 #endif
180 
181 
182 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
183 /*
184  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
185  *
186  * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
187  * S is a ROTATION) because the SHA-256/384/512 description document
188  * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
189  * same "backwards" definition.
190  */
191 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
192 #define R(b,x) ((x) >> (b))
193 /* 32-bit Rotate-right (used in SHA-256): */
194 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
195 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
196 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
197 
198 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
199 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
200 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
201 
202 /* Four of six logical functions used in SHA-256: */
203 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
204 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
205 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
206 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
207 
208 /* Four of six logical functions used in SHA-384 and SHA-512: */
209 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
210 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
211 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
212 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
213 
214 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
215 /* NOTE: These should not be accessed directly from outside this
216  * library -- they are intended for private internal visibility/use
217  * only.
218  */
219 static void SHA512_Last(SHA512_CTX*);
220 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
221 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
222 
223 
224 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
225 /* Hash constant words K for SHA-256: */
226 const static sha2_word32 K256[64] = {
227  0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
228  0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
229  0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
230  0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
231  0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
232  0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
233  0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
234  0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
235  0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
236  0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
237  0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
238  0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
239  0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
240  0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
241  0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
242  0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
243 };
244 
245 /* Initial hash value H for SHA-256: */
247  0x6a09e667UL,
248  0xbb67ae85UL,
249  0x3c6ef372UL,
250  0xa54ff53aUL,
251  0x510e527fUL,
252  0x9b05688cUL,
253  0x1f83d9abUL,
254  0x5be0cd19UL
255 };
256 
257 /* Hash constant words K for SHA-384 and SHA-512: */
258 const static sha2_word64 K512[80] = {
259  0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
260  0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
261  0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
262  0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
263  0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
264  0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
265  0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
266  0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
267  0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
268  0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
269  0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
270  0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
271  0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
272  0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
273  0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
274  0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
275  0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
276  0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
277  0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
278  0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
279  0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
280  0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
281  0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
282  0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
283  0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
284  0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
285  0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
286  0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
287  0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
288  0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
289  0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
290  0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
291  0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
292  0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
293  0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
294  0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
295  0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
296  0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
297  0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
298  0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
299 };
300 
301 /* Initial hash value H for SHA-384 */
303  0xcbbb9d5dc1059ed8ULL,
304  0x629a292a367cd507ULL,
305  0x9159015a3070dd17ULL,
306  0x152fecd8f70e5939ULL,
307  0x67332667ffc00b31ULL,
308  0x8eb44a8768581511ULL,
309  0xdb0c2e0d64f98fa7ULL,
310  0x47b5481dbefa4fa4ULL
311 };
312 
313 /* Initial hash value H for SHA-512 */
315  0x6a09e667f3bcc908ULL,
316  0xbb67ae8584caa73bULL,
317  0x3c6ef372fe94f82bULL,
318  0xa54ff53a5f1d36f1ULL,
319  0x510e527fade682d1ULL,
320  0x9b05688c2b3e6c1fULL,
321  0x1f83d9abfb41bd6bULL,
322  0x5be0cd19137e2179ULL
323 };
324 
325 /*
326  * Constant used by SHA256/384/512_End() functions for converting the
327  * digest to a readable hexadecimal character string:
328  */
329 static const char *sha2_hex_digits = "0123456789abcdef";
330 
331 
332 /*** SHA-256: *********************************************************/
333 void sat_SHA256_Init(SHA256_CTX* context) {
334  if (context == (SHA256_CTX*)0) {
335  return;
336  }
338  MEMSET_BZERO((char *)context->buffer, SHA256_BLOCK_LENGTH);
339  context->bitcount = 0;
340 }
341 
342 #ifdef SHA2_UNROLL_TRANSFORM
343 
344 /* Unrolled SHA-256 round macros: */
345 
346 #ifndef WORDS_BIGENDIAN
347 
348 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
349  REVERSE32(*data++, W256[j]); \
350  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
351  K256[j] + W256[j]; \
352  (d) += T1; \
353  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
354  j++
355 
356 
357 #else /* !WORDS_BIGENDIAN */
358 
359 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
360  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
361  K256[j] + (W256[j] = *data++); \
362  (d) += T1; \
363  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
364  j++
365 
366 #endif /* !WORDS_BIGENDIAN */
367 
368 #define ROUND256(a,b,c,d,e,f,g,h) \
369  s0 = W256[(j+1)&0x0f]; \
370  s0 = sigma0_256(s0); \
371  s1 = W256[(j+14)&0x0f]; \
372  s1 = sigma1_256(s1); \
373  T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
374  (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
375  (d) += T1; \
376  (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
377  j++
378 
379 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
380  sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
381  sha2_word32 T1, *W256;
382  int j;
383 
384  W256 = context->buffer;
385 
386  /* Initialize registers with the prev. intermediate value */
387  a = context->state[0];
388  b = context->state[1];
389  c = context->state[2];
390  d = context->state[3];
391  e = context->state[4];
392  f = context->state[5];
393  g = context->state[6];
394  h = context->state[7];
395 
396  j = 0;
397  do {
398  /* Rounds 0 to 15 (unrolled): */
399  ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
400  ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
401  ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
402  ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
403  ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
404  ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
405  ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
406  ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
407  } while (j < 16);
408 
409  /* Now for the remaining rounds to 64: */
410  do {
411  ROUND256(a,b,c,d,e,f,g,h);
412  ROUND256(h,a,b,c,d,e,f,g);
413  ROUND256(g,h,a,b,c,d,e,f);
414  ROUND256(f,g,h,a,b,c,d,e);
415  ROUND256(e,f,g,h,a,b,c,d);
416  ROUND256(d,e,f,g,h,a,b,c);
417  ROUND256(c,d,e,f,g,h,a,b);
418  ROUND256(b,c,d,e,f,g,h,a);
419  } while (j < 64);
420 
421  /* Compute the current intermediate hash value */
422  context->state[0] += a;
423  context->state[1] += b;
424  context->state[2] += c;
425  context->state[3] += d;
426  context->state[4] += e;
427  context->state[5] += f;
428  context->state[6] += g;
429  context->state[7] += h;
430 
431  /* Clean up */
432  a = b = c = d = e = f = g = h = T1 = 0;
433 }
434 
435 #else /* SHA2_UNROLL_TRANSFORM */
436 
437 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
438  sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
439  sha2_word32 T1, T2, *W256;
440  int j;
441 
442  W256 = context->buffer;
443 
444  /* Initialize registers with the prev. intermediate value */
445  a = context->state[0];
446  b = context->state[1];
447  c = context->state[2];
448  d = context->state[3];
449  e = context->state[4];
450  f = context->state[5];
451  g = context->state[6];
452  h = context->state[7];
453 
454  j = 0;
455  do {
456 #ifndef WORDS_BIGENDIAN
457  /* Copy data while converting to host byte order */
458  REVERSE32(*data++,W256[j]);
459  /* Apply the SHA-256 compression function to update a..h */
460  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
461 #else /* !WORDS_BIGENDIAN */
462  /* Apply the SHA-256 compression function to update a..h with copy */
463  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
464 #endif /* !WORDS_BIGENDIAN */
465  T2 = Sigma0_256(a) + Maj(a, b, c);
466  h = g;
467  g = f;
468  f = e;
469  e = d + T1;
470  d = c;
471  c = b;
472  b = a;
473  a = T1 + T2;
474 
475  j++;
476  } while (j < 16);
477 
478  do {
479  /* Part of the message block expansion: */
480  s0 = W256[(j+1)&0x0f];
481  s0 = sigma0_256(s0);
482  s1 = W256[(j+14)&0x0f];
483  s1 = sigma1_256(s1);
484 
485  /* Apply the SHA-256 compression function to update a..h */
486  T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
487  (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
488  T2 = Sigma0_256(a) + Maj(a, b, c);
489  h = g;
490  g = f;
491  f = e;
492  e = d + T1;
493  d = c;
494  c = b;
495  b = a;
496  a = T1 + T2;
497 
498  j++;
499  } while (j < 64);
500 
501  /* Compute the current intermediate hash value */
502  context->state[0] += a;
503  context->state[1] += b;
504  context->state[2] += c;
505  context->state[3] += d;
506  context->state[4] += e;
507  context->state[5] += f;
508  context->state[6] += g;
509  context->state[7] += h;
510 
511  /* Clean up */
512  a = b = c = d = e = f = g = h = T1 = T2 = 0;
513 }
514 
515 #endif /* SHA2_UNROLL_TRANSFORM */
516 
517 void sat_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
518  unsigned int freespace, usedspace;
519 
520  if (len == 0) {
521  /* Calling with no data is valid - we do nothing */
522  return;
523  }
524 
525  /* Sanity check: */
526  /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */
527 
528  usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
529  if (usedspace > 0) {
530  /* Calculate how much free space is available in the buffer */
531  freespace = SHA256_BLOCK_LENGTH - usedspace;
532 
533  if (len >= freespace) {
534  /* Fill the buffer completely and process it */
535  MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace);
536  context->bitcount += freespace << 3;
537  len -= freespace;
538  data += freespace;
539  SHA256_Transform(context, context->buffer);
540  } else {
541  /* The buffer is not yet full */
542  MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len);
543  context->bitcount += len << 3;
544  /* Clean up: */
545  usedspace = freespace = 0;
546  return;
547  }
548  }
549  while (len >= SHA256_BLOCK_LENGTH) {
550  /* Process as many complete blocks as we can */
551  SHA256_Transform(context, (sha2_word32*)data);
552  context->bitcount += SHA256_BLOCK_LENGTH << 3;
553  len -= SHA256_BLOCK_LENGTH;
554  data += SHA256_BLOCK_LENGTH;
555  }
556  if (len > 0) {
557  /* There's left-overs, so save 'em */
558  MEMCPY_BCOPY((char *)context->buffer, data, len);
559  context->bitcount += len << 3;
560  }
561  /* Clean up: */
562  usedspace = freespace = 0;
563 }
564 
565 void sat_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
566  sha2_word32 *d = (sha2_word32*)digest;
567  unsigned int usedspace;
568 
569  /* Sanity check: */
570  /* assert(context != (SHA256_CTX*)0); */
571 
572  /* If no digest buffer is passed, we don't bother doing this: */
573  if (digest != (sha2_byte*)0) {
574  usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
575 #ifndef WORDS_BIGENDIAN
576  /* Convert FROM host byte order */
577  REVERSE64(context->bitcount,context->bitcount);
578 #endif
579  if (usedspace > 0) {
580  /* Begin padding with a 1 bit: */
581  ((char *)context->buffer)[usedspace++] = 0x80;
582 
583  if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
584  /* Set-up for the last transform: */
585  MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
586  } else {
587  if (usedspace < SHA256_BLOCK_LENGTH) {
588  MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_BLOCK_LENGTH - usedspace);
589  }
590  /* Do second-to-last transform: */
591  SHA256_Transform(context, context->buffer);
592 
593  /* And set-up for the last transform: */
594  MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH);
595  }
596  } else {
597  /* Set-up for the last transform: */
598  MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH);
599 
600  /* Begin padding with a 1 bit: */
601  *((char *)context->buffer) = 0x80;
602  }
603  /* Set the bit count: */
604  MEMCPY_BCOPY(&((char *)context->buffer)[SHA256_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount), 8);
605 
606  /* Final transform: */
607  SHA256_Transform(context, context->buffer);
608 
609 #ifndef WORDS_BIGENDIAN
610  {
611  /* Convert TO host byte order */
612  int j;
613  for (j = 0; j < 8; j++) {
614  REVERSE32(context->state[j],context->state[j]);
615  *d++ = context->state[j];
616  }
617  }
618 #else
620 #endif
621  }
622 
623  /* Clean up state data: */
624  MEMSET_BZERO(context, sizeof(context));
625  usedspace = 0;
626 }
627 
628 char *sat_SHA256_End(SHA256_CTX* context, char buffer[]) {
629  sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
630  int i;
631 
632  /* Sanity check: */
633  /* assert(context != (SHA256_CTX*)0); */
634 
635  if (buffer != (char*)0) {
636  sat_SHA256_Final(digest, context);
637 
638  for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
639  *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
640  *buffer++ = sha2_hex_digits[*d & 0x0f];
641  d++;
642  }
643  *buffer = (char)0;
644  } else {
645  MEMSET_BZERO(context, sizeof(context));
646  }
648  return buffer;
649 }
650 
651 char* sat_SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
652  SHA256_CTX context;
653 
654  sat_SHA256_Init(&context);
655  sat_SHA256_Update(&context, data, len);
656  return sat_SHA256_End(&context, digest);
657 }
658 
659 
660 /*** SHA-512: *********************************************************/
661 void sat_SHA512_Init(SHA512_CTX* context) {
662  if (context == (SHA512_CTX*)0) {
663  return;
664  }
666  MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH);
667  context->bitcount[0] = context->bitcount[1] = 0;
668 }
669 
670 #ifdef SHA2_UNROLL_TRANSFORM
671 
672 /* Unrolled SHA-512 round macros: */
673 #ifndef WORDS_BIGENDIAN
674 
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676  REVERSE64(*data++, W512[j]); \
677  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
678  K512[j] + W512[j]; \
679  (d) += T1, \
680  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
681  j++
682 
683 
684 #else /* !WORDS_BIGENDIAN */
685 
686 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
687  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
688  K512[j] + (W512[j] = *data++); \
689  (d) += T1; \
690  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
691  j++
692 
693 #endif /* !WORDS_BIGENDIAN */
694 
695 #define ROUND512(a,b,c,d,e,f,g,h) \
696  s0 = W512[(j+1)&0x0f]; \
697  s0 = sigma0_512(s0); \
698  s1 = W512[(j+14)&0x0f]; \
699  s1 = sigma1_512(s1); \
700  T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
701  (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
702  (d) += T1; \
703  (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
704  j++
705 
706 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
707  sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
708  sha2_word64 T1, *W512 = context->buffer;
709  int j;
710 
711  /* Initialize registers with the prev. intermediate value */
712  a = context->state[0];
713  b = context->state[1];
714  c = context->state[2];
715  d = context->state[3];
716  e = context->state[4];
717  f = context->state[5];
718  g = context->state[6];
719  h = context->state[7];
720 
721  j = 0;
722  do {
723  ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
724  ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
725  ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
726  ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
727  ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
728  ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
729  ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
730  ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
731  } while (j < 16);
732 
733  /* Now for the remaining rounds up to 79: */
734  do {
735  ROUND512(a,b,c,d,e,f,g,h);
736  ROUND512(h,a,b,c,d,e,f,g);
737  ROUND512(g,h,a,b,c,d,e,f);
738  ROUND512(f,g,h,a,b,c,d,e);
739  ROUND512(e,f,g,h,a,b,c,d);
740  ROUND512(d,e,f,g,h,a,b,c);
741  ROUND512(c,d,e,f,g,h,a,b);
742  ROUND512(b,c,d,e,f,g,h,a);
743  } while (j < 80);
744 
745  /* Compute the current intermediate hash value */
746  context->state[0] += a;
747  context->state[1] += b;
748  context->state[2] += c;
749  context->state[3] += d;
750  context->state[4] += e;
751  context->state[5] += f;
752  context->state[6] += g;
753  context->state[7] += h;
754 
755  /* Clean up */
756  a = b = c = d = e = f = g = h = T1 = 0;
757 }
758 
759 #else /* SHA2_UNROLL_TRANSFORM */
760 
761 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
762  sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
763  sha2_word64 T1, T2, *W512 = context->buffer;
764  int j;
765 
766  /* Initialize registers with the prev. intermediate value */
767  a = context->state[0];
768  b = context->state[1];
769  c = context->state[2];
770  d = context->state[3];
771  e = context->state[4];
772  f = context->state[5];
773  g = context->state[6];
774  h = context->state[7];
775 
776  j = 0;
777  do {
778 #ifndef WORDS_BIGENDIAN
779  /* Convert TO host byte order */
780  REVERSE64(*data++, W512[j]);
781  /* Apply the SHA-512 compression function to update a..h */
782  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
783 #else /* !WORDS_BIGENDIAN */
784  /* Apply the SHA-512 compression function to update a..h with copy */
785  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
786 #endif /* !WORDS_BIGENDIAN */
787  T2 = Sigma0_512(a) + Maj(a, b, c);
788  h = g;
789  g = f;
790  f = e;
791  e = d + T1;
792  d = c;
793  c = b;
794  b = a;
795  a = T1 + T2;
796 
797  j++;
798  } while (j < 16);
799 
800  do {
801  /* Part of the message block expansion: */
802  s0 = W512[(j+1)&0x0f];
803  s0 = sigma0_512(s0);
804  s1 = W512[(j+14)&0x0f];
805  s1 = sigma1_512(s1);
806 
807  /* Apply the SHA-512 compression function to update a..h */
808  T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
809  (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
810  T2 = Sigma0_512(a) + Maj(a, b, c);
811  h = g;
812  g = f;
813  f = e;
814  e = d + T1;
815  d = c;
816  c = b;
817  b = a;
818  a = T1 + T2;
819 
820  j++;
821  } while (j < 80);
822 
823  /* Compute the current intermediate hash value */
824  context->state[0] += a;
825  context->state[1] += b;
826  context->state[2] += c;
827  context->state[3] += d;
828  context->state[4] += e;
829  context->state[5] += f;
830  context->state[6] += g;
831  context->state[7] += h;
832 
833  /* Clean up */
834  a = b = c = d = e = f = g = h = T1 = T2 = 0;
835 }
836 
837 #endif /* SHA2_UNROLL_TRANSFORM */
838 
839 void sat_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
840  unsigned int freespace, usedspace;
841 
842  if (len == 0) {
843  /* Calling with no data is valid - we do nothing */
844  return;
845  }
846 
847  /* Sanity check: */
848  /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */
849 
850  usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
851  if (usedspace > 0) {
852  /* Calculate how much free space is available in the buffer */
853  freespace = SHA512_BLOCK_LENGTH - usedspace;
854 
855  if (len >= freespace) {
856  /* Fill the buffer completely and process it */
857  MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace);
858  ADDINC128(context->bitcount, freespace << 3);
859  len -= freespace;
860  data += freespace;
861  SHA512_Transform(context, context->buffer);
862  } else {
863  /* The buffer is not yet full */
864  MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len);
865  ADDINC128(context->bitcount, len << 3);
866  /* Clean up: */
867  usedspace = freespace = 0;
868  return;
869  }
870  }
871  while (len >= SHA512_BLOCK_LENGTH) {
872  /* Process as many complete blocks as we can */
873  SHA512_Transform(context, (sha2_word64*)data);
874  ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
875  len -= SHA512_BLOCK_LENGTH;
876  data += SHA512_BLOCK_LENGTH;
877  }
878  if (len > 0) {
879  /* There's left-overs, so save 'em */
880  MEMCPY_BCOPY((char *)context->buffer, data, len);
881  ADDINC128(context->bitcount, len << 3);
882  }
883  /* Clean up: */
884  usedspace = freespace = 0;
885 }
886 
887 static void SHA512_Last(SHA512_CTX* context) {
888  unsigned int usedspace;
889 
890  usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
891 #ifndef WORDS_BIGENDIAN
892  /* Convert FROM host byte order */
893  REVERSE64(context->bitcount[0],context->bitcount[0]);
894  REVERSE64(context->bitcount[1],context->bitcount[1]);
895 #endif
896  if (usedspace > 0) {
897  /* Begin padding with a 1 bit: */
898  ((char *)context->buffer)[usedspace++] = 0x80;
899 
900  if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
901  /* Set-up for the last transform: */
902  MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
903  } else {
904  if (usedspace < SHA512_BLOCK_LENGTH) {
905  MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_BLOCK_LENGTH - usedspace);
906  }
907  /* Do second-to-last transform: */
908  SHA512_Transform(context, context->buffer);
909 
910  /* And set-up for the last transform: */
911  MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH - 2);
912  }
913  } else {
914  /* Prepare for final transform: */
915  MEMSET_BZERO((char *)context->buffer, SHA512_SHORT_BLOCK_LENGTH);
916 
917  /* Begin padding with a 1 bit: */
918  *((char *)context->buffer) = 0x80;
919  }
920  /* Store the length of input data (in bits): */
921  MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount[1]), 8);
922  MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH + 8], (char *)(&context->bitcount[0]), 8);
923 
924  /* Final transform: */
925  SHA512_Transform(context, context->buffer);
926 }
927 
928 void sat_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
929  sha2_word64 *d = (sha2_word64*)digest;
930 
931  /* Sanity check: */
932  /* assert(context != (SHA512_CTX*)0); */
933 
934  /* If no digest buffer is passed, we don't bother doing this: */
935  if (digest != (sha2_byte*)0) {
936  SHA512_Last(context);
937 
938  /* Save the hash data for output: */
939 #ifndef WORDS_BIGENDIAN
940  {
941  /* Convert TO host byte order */
942  int j;
943  for (j = 0; j < 8; j++) {
944  REVERSE64(context->state[j],context->state[j]);
945  *d++ = context->state[j];
946  }
947  }
948 #else
950 #endif
951  }
952 
953  /* Zero out state data */
954  MEMSET_BZERO(context, sizeof(context));
955 }
956 
957 char *sat_SHA512_End(SHA512_CTX* context, char buffer[]) {
958  sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
959  int i;
960 
961  /* Sanity check: */
962  /* assert(context != (SHA512_CTX*)0); */
963 
964  if (buffer != (char*)0) {
965  sat_SHA512_Final(digest, context);
966 
967  for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
968  *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
969  *buffer++ = sha2_hex_digits[*d & 0x0f];
970  d++;
971  }
972  *buffer = (char)0;
973  } else {
974  MEMSET_BZERO(context, sizeof(context));
975  }
977  return buffer;
978 }
979 
980 char* sat_SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
981  SHA512_CTX context;
982 
983  sat_SHA512_Init(&context);
984  sat_SHA512_Update(&context, data, len);
985  return sat_SHA512_End(&context, digest);
986 }
987 
988 
989 /*** SHA-384: *********************************************************/
990 void sat_SHA384_Init(SHA384_CTX* context) {
991  if (context == (SHA384_CTX*)0) {
992  return;
993  }
995  MEMSET_BZERO((char *)context->buffer, SHA384_BLOCK_LENGTH);
996  context->bitcount[0] = context->bitcount[1] = 0;
997 }
998 
999 void sat_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1000  sat_SHA512_Update((SHA512_CTX*)context, data, len);
1001 }
1002 
1003 void sat_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1004  sha2_word64 *d = (sha2_word64*)digest;
1005 
1006  /* Sanity check: */
1007  /* assert(context != (SHA384_CTX*)0); */
1008 
1009  /* If no digest buffer is passed, we don't bother doing this: */
1010  if (digest != (sha2_byte*)0) {
1011  SHA512_Last((SHA512_CTX*)context);
1012 
1013  /* Save the hash data for output: */
1014 #ifndef WORDS_BIGENDIAN
1015  {
1016  /* Convert TO host byte order */
1017  int j;
1018  for (j = 0; j < 6; j++) {
1019  REVERSE64(context->state[j],context->state[j]);
1020  *d++ = context->state[j];
1021  }
1022  }
1023 #else
1024  MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1025 #endif
1026  }
1027 
1028  /* Zero out state data */
1029  MEMSET_BZERO(context, sizeof(context));
1030 }
1031 
1032 char *sat_SHA384_End(SHA384_CTX* context, char buffer[]) {
1033  sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1034  int i;
1035 
1036  /* Sanity check: */
1037  /* assert(context != (SHA384_CTX*)0); */
1038 
1039  if (buffer != (char*)0) {
1040  sat_SHA384_Final(digest, context);
1041 
1042  for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1043  *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1044  *buffer++ = sha2_hex_digits[*d & 0x0f];
1045  d++;
1046  }
1047  *buffer = (char)0;
1048  } else {
1049  MEMSET_BZERO(context, sizeof(context));
1050  }
1052  return buffer;
1053 }
1054 
1055 char* sat_SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1056  SHA384_CTX context;
1057 
1058  sat_SHA384_Init(&context);
1059  sat_SHA384_Update(&context, data, len);
1060  return sat_SHA384_End(&context, digest);
1061 }