Jump to contentJump to page navigation: previous page [access key p]/next page [access key n]
ContentsContents
Virtualization Guide
  1. Preface
  2. I Introduction
    1. 1 Virtualization technology
    2. 2 Virtualization scenarios
    3. 3 Introduction to Xen virtualization
    4. 4 Introduction to KVM virtualization
    5. 5 Virtualization tools
    6. 6 Installation of virtualization components
  3. II Managing virtual machines with libvirt
    1. 7 Starting and stopping libvirtd
    2. 8 Preparing the VM Host Server
    3. 9 Guest installation
    4. 10 Basic VM Guest management
    5. 11 Connecting and authorizing
    6. 12 Advanced storage topics
    7. 13 Configuring virtual machines with Virtual Machine Manager
    8. 14 Configuring virtual machines with virsh
    9. 15 Managing virtual machines with Vagrant
    10. 16 Xen to KVM migration guide
  4. III Hypervisor-independent features
    1. 17 Disk cache modes
    2. 18 VM Guest clock settings
    3. 19 libguestfs
    4. 20 QEMU guest agent
    5. 21 Software TPM emulator
  5. IV Managing virtual machines with Xen
    1. 22 Setting up a virtual machine host
    2. 23 Virtual networking
    3. 24 Managing a virtualization environment
    4. 25 Block devices in Xen
    5. 26 Virtualization: configuration options and settings
    6. 27 Administrative tasks
    7. 28 XenStore: configuration database shared between domains
    8. 29 Xen as a high-availability virtualization host
    9. 30 Xen: converting a paravirtual (PV) guest into a fully virtual (FV/HVM) guest
  6. V Managing virtual machines with QEMU
    1. 31 QEMU overview
    2. 32 Setting up a KVM VM Host Server
    3. 33 Guest installation
    4. 34 Running virtual machines with qemu-system-ARCH
    5. 35 Virtual machine administration using QEMU monitor
  7. VI Troubleshooting
    1. 36 Integrated help and package documentation
    2. 37 Gathering system information and logs
  8. Glossary
  9. A Configuring GPU Pass-Through for NVIDIA cards
  10. B GNU licenses
Navigation
Applies to openSUSE Leap 15.3

6 Installation of virtualization components Edit source

You can install the virtualization tools required to run a VM Host Server in two ways:

  • During the host OS installation by selecting a specific system role.

  • After the host OS is installed by running a corresponding YaST module.

6.1 Specifying a system role Edit source

You can install all the tools required for virtualization during the host openSUSE Leap installation. During the installation steps (refer to Book “Start-Up”, Chapter 3 “Installation steps”), you will be presented with the System Role screen.

System Role screen
Figure 6.1: System Role screen

Here you can select either the KVM Virtualization Host or Xen Virtualization Host roles. The appropriate software selection and setup will be automatically performed during the OS installation.

Tip
Tip

Both virtualization system roles will create a dedicated /var/lib/libvirt partition, and enable the firewall and Kdump services.

6.2 Running the yast2-vm module Edit source

Depending on the scope of the installation, none of the virtualization tools may be installed on your system. They will be automatically installed when configuring the hypervisor with the YaST module Virtualization › Install Hypervisor and Tools. In case this module is not available in YaST, install the package yast2-vm.

6.2.1 Installing KVM Edit source

To install KVM and the KVM tools, proceed as follows:

  1. Verify that the yast2-vm package is installed. This package is YaST's configuration tool that simplifies the installation of hypervisors.

  2. Start YaST and choose Virtualization › Install Hypervisor and Tools.

  3. Select KVM server for a minimal installation of QEMU tools. Select KVM tools if a libvirt-based management stack is also desired. Confirm with Accept.

  4. To enable normal networking for the VM Guest, using a network bridge is recommended. YaST offers to automatically configure a bridge on the VM Host Server. Agree to do so by choosing Yes, otherwise choose No.

  5. After the setup has been finished, you can start setting up VM Guests. Rebooting the VM Host Server is not required.

6.2.2 Installing Xen Edit source

To install Xen and Xen tools, proceed as follows:

  1. Start YaST and choose Virtualization › Install Hypervisor and Tools.

  2. Select Xen server for a minimal installation of Xen tools. Select Xen tools if a libvirt-based management stack is also desired. Confirm with Accept.

  3. To enable normal networking for the VM Guest, using a network bridge is recommended. YaST offers to automatically configure a bridge on the VM Host Server. Agree to do so by choosing Yes, otherwise choose No.

  4. After the setup has been finished, you need to reboot the machine with the Xen kernel.

    Tip
    Tip: Default boot kernel

    If everything works as expected, change the default boot kernel with YaST and make the Xen-enabled kernel the default. For more information about changing the default kernel, see Book “Reference”, Chapter 12 “The boot loader GRUB 2”, Section 12.3 “Configuring the boot loader with YaST”.

6.3 Patterns Edit source

It is possible using Zypper and patterns to install virtualization packages. Run the command zypper in -t pattern PATTERN. Available patterns are:

KVM
  • kvm_server: sets up the KVM VM Host Server with QEMU tools for management

  • kvm_tools: installs the libvirt tools for managing and monitoring VM Guests

Xen
  • xen_server: sets up the Xen VM Host Server with Xen tools for management

  • xen_tools: installs the libvirt tools for managing and monitoring VM Guests

6.4 Installing UEFI support Edit source

Note
Note

We support UEFI Secure Boot on AMD64/Intel 64 guests only. KVM guests support UEFI Secure Boot by using the OVMF firmware. Xen HVM guests support booting from the OVMF firmware as well, but they do not support UEFI Secure Boot.

UEFI support is provided by OVMF (Open Virtual Machine Firmware). To enable UEFI boot, first install the qemu-ovmf-x86_64 or qemu-uefi-aarch64 package depending on the architecture of the guest.

The firmware used by virtual machines is auto-selected. The auto-selection is based on the JSON files in the firmware package described above. The libvirt QEMU driver parses those files when loading so it knows the capabilities of the various types of firmware. Then when the user selects the type of firmware and any desired features (for example, support for UEFI Secure Boot), libvirt will be able to find a firmware file that satisfies the user's requirements.

For example, to specify EFI with UEFI Secure Boot, use the following configuration:

<os firmware='efi'>
 <loader secure='yes'/>
</os>

The qemu-ovmf-x86_64 package contains the following important UEFI firmware images. They provide UEFI Secure Boot capability for various VM Guests:

# rpm -ql qemu-ovmf-x86_64
[...]
/usr/share/qemu/ovmf-x86_64-smm-ms-code.bin
/usr/share/qemu/ovmf-x86_64-smm-ms-vars.bin
/usr/share/qemu/ovmf-x86_64-smm-opensuse-code.bin
/usr/share/qemu/ovmf-x86_64-smm-opensuse-vars.bin
/usr/share/qemu/ovmf-x86_64-smm-suse-code.bin
/usr/share/qemu/ovmf-x86_64-smm-suse-vars.bin
[...]
  • To use UEFI Secure Boot for SUSE Linux Enterprise guests, use the ovmf-x86_64-smm-suse-code.bin firmware.

  • To use UEFI Secure Boot for openSUSE guests, use the ovmf-x86_64-smm-opensuse-code.bin firmware.

  • To use UEFI Secure Boot for Microsoft Windows guests, use the ovmf-x86_64-smm-ms-code.bin firmware.

For the AArch64 architecture, the package is named qemu-uefi-aarch32:

# rpm -ql qemu-uefi-aarch32
[...]
/usr/share/qemu/aavmf-aarch32-code.bin
/usr/share/qemu/aavmf-aarch32-vars.bin
/usr/share/qemu/firmware
/usr/share/qemu/firmware/60-aavmf-aarch32.json
/usr/share/qemu/qemu-uefi-aarch32.bin

The *-code.bin files are the UEFI firmware files. The *-vars.bin files are corresponding variable store images that can be used as a template for a per-VM non-volatile store. libvirt copies the specified vars template to a per-VM path under /var/lib/libvirt/qemu/nvram/ when first creating the VM. Files without code or vars in the name can be used as a single UEFI image. They are not as useful since no UEFI variables persist across power cycles of the VM.

The *-ms*.bin files contain UEFI CA keys as found on real hardware. Therefore, they are configured as the default in libvirt. Likewise, the *-suse*.bin files contain preinstalled SUSE keys. There is also a set of files with no preinstalled keys.

For details, see Using UEFI Secure Boot and http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt.

6.5 Enable nested virtualization in KVM Edit source

Important
Important: Technology preview

KVM's nested virtualization is still a technology preview. It is provided for testing purposes and is not supported.

Nested guests are KVM guests run in a KVM guest. When describing nested guests, we will use the following virtualization layers:

L0

A bare metal host running KVM.

L1

A virtual machine running on L0. Because it can run another KVM, it is called a guest hypervisor.

L2

A virtual machine running on L1. It is called a nested guest.

Nested virtualization has many advantages. You can benefit from it in the following scenarios:

  • Manage your own virtual machines directly with your hypervisor of choice in cloud environments.

  • Enable the live migration of hypervisors and their guest virtual machines as a single entity.

  • Use it for software development and testing.

To enable nesting temporarily, remove the module and reload it with the nested KVM module parameter:

  • For Intel CPUs, run:

    > sudo modprobe -r kvm_intel && modprobe kvm_intel nested=1
  • For AMD CPUs, run:

    > sudo modprobe -r kvm_amd && modprobe kvm_amd nested=1

To enable nesting permanently, enable the nested KVM module parameter in the /etc/modprobe.d/kvm_*.conf file, depending on your CPU:

  • For Intel CPUs, edit /etc/modprobe.d/kvm_intel.conf and add the following line:

    options kvm_intel nested=1
  • For AMD CPUs, edit /etc/modprobe.d/kvm_amd.conf and add the following line:

    options kvm_amd nested=1

When your L0 host is capable of nesting, you will be able to start an L1 guest in one of the following ways:

  • Use the -cpu host QEMU command line option.

  • Add the vmx (for Intel CPUs) or the svm (for AMD CPUs) CPU feature to the -cpu QEMU command line option, which enables virtualization for the virtual CPU.

6.5.1 VMware ESX as a guest hypervisor Edit source

If you use VMware ESX as a guest hypervisor on top of KVM bare metal hypervisor, you may experience unstable network communication. This problem happens especially between nested KVM guests and the KVM bare metal hypervisor or external network. The following default CPU configuration of the nested KVM guest is causing the problem:

<cpu mode='host-model' check='partial'/>

To fix it, modify the CPU configuration as follow:

[...]
<cpu mode='host-passthrough' check='none'>
 <cache mode='passthrough'/>
</cpu>
[...]
Print this page